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 a b s t r a c t

Recent efforts in medical image computing have focused on improving fairness by balancing it with accuracy 
within a single, unified model. However, this often creates a trade-off: gains for underrepresented groups can 
come at the expense of reduced accuracy for groups that were previously well-served. In high-stakes clinical con-
texts, even minor drops in accuracy can lead to serious consequences, making such trade-offs highly contentious. 
Rather than accepting this compromise, we reframe the fairness objective in this paper as maximizing diagnostic 
accuracy for each patient group by leveraging additional computational resources to train group-specific models. 
To achieve this goal, we introduce SPARE, a novel data reweighting algorithm designed to optimize performance 
for a given group. SPARE evaluates the value of each training sample using two key factors: utility, which re-
flects the sample’s contribution to refining the model’s decision boundary, and group similarity, which captures 
its relevance to the target group. By assigning greater weight to samples that score highly on both metrics, SPARE 
rebalances the training process-particularly leveraging the value of out-of-group data-to improve group-specific 
accuracy while avoiding the traditional fairness-accuracy trade-off. Experiments on two skin disease datasets 
demonstrate that SPARE significantly improves group-specific performance while maintaining comparable fair-
ness metrics, highlighting its promise as a more practical fairness paradigm for improving clinical reliability.

1.  Introduction

Machine learning-based medical diagnosis systems have become in-
creasingly prevalent. During the diagnosing process, these systems typ-
ically employ a “one-size-fits-all” approach, using models trained on 
data from diverse populations to maximize overall accuracy. However, 
due to substantial differences in disease prevalence and manifestations 
across patient groups, such generalized models typically achieve sat-
isfactory performance only for well-represented populations, while un-
derperforming for others. For instance, in dermatology, individuals with 
lighter skin have lower melanin levels (Caini et al., 2009), making them 
more susceptible to melanoma. Consequently, they are overrepresented 
in training datasets and are prioritized during the model’s learning pro-
cess, leading to better performance for lighter skin types compared to 
dark skin types. This discriminatory behavior can have serious societal 
consequences, including misdiagnoses or delayed treatments for cer-
tain groups, ultimately exacerbating existing healthcare disparities. To 
mitigate such biases, traditional fairness-aware algorithms (Aayushman 
et al., 2024; Chiu et al., 2024; Zhang et al., 2022; Zong et al., 2022; 
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Mehrabi et al., 2021; Puyol-Antón et al., 2021) aim to reduce the ac-
curacy gap between groups. This conventional approach, however, of-
ten improves accuracy for underrepresented groups at the expense of 
reducing performance for those originally well-served, embodying the 
well-known fairness-accuracy trade-off (Rodolfa et al., 2021).

In clinical settings, where even minor losses in accuracy can lead 
to severe consequences (Chen et al., 2018), sacrificing precision for the 
sake of fairness is simply not an option. Unlike non-critical domains-
such as online search engines (Alfiana et al., 2023) or content recom-
mendation systems (Jesse and Jannach, 2021)-where slight degrada-
tions in performance may be acceptable, in healthcare they translate 
to missed or incorrect diagnoses that endanger patient safety. More crit-
ically, these reductions often occur near the decision boundary-precisely 
where clinical cases are most ambiguous and clinicians are most likely 
to make errors (Yuan et al., 2021). In such high-uncertainty scenarios, 
even a slight drop in accuracy can disproportionately increase the risk 
of misdiagnosis, amplifying clinical harm. At the same time, it is cru-
cial to recognize that improving outcomes for underrepresented groups 
does not inherently require sacrificing performance for well-served ones. 
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Fairness algorithms are often framed as redistributing performance, but 
in practice, drops in accuracy for well-served groups are neither neces-
sary nor causally tied to gains for others. In fact, once improvements are 
achieved for disadvantaged groups, it is both feasible and desirable to 
retain the original model for groups already performing well. Therefore, 
we propose rethinking fairness in healthcare by shifting its definition: 
rather than merely closing the gap between groups while keeping aver-
age accuracy, it should be achieved by enabling each group to reach its 
maximum possible accuracy.

Central to our approach is a novel trade-off triangle involving fair-
ness, group-specific accuracy, and computing resources. While every 
model inherently grapples with these three factors, previous methods 
have largely confined their efforts to balancing group accuracy and fair-
ness within a single model, implicitly assuming fixed computational re-
sources and tolerable performance drops. In contrast, in this paper, we 
explicitly leverage additional computing power to train group-specific 
models, bypassing the traditional fairness-accuracy trade-off. This com-
putational investment aims to maximize diagnostic precision for each 
group, a requirement indispensable for clinical reliability in high-stakes 
applications. While many domains accept modest accuracy losses, in 
healthcare the imperative to optimize performance across all groups jus-
tifies the investment in additional computational capacity.

This paper focuses on developing methods to maximize performance 
for a target group and train dedicated models for each group. This 
group-specific approach enables more precise modeling and leads to im-
proved performance across all subpopulations. While tailoring models 
to individual patient groups holds great promise, a central challenge 
remains: how to identify the most effective training data for each tar-
get group. The most straightforward approach is to train exclusively on 
data from the target group, but this often leads to suboptimal perfor-
mance due to data scarcity, limiting the model’s ability to capture ro-
bust patterns. Conversely, leveraging the entire dataset may introduce 
distributional shifts that obscure the unique characteristics of the target 
group. This situation presents an inherent trade-off: while out-of-group 
data can enhance generalizability, it may simultaneously compromise 
the model’s ability to learn group-specific features. This trade-off is em-
pirically shown in Section 2, and theoretically shown in Section 4.2. 
However, selectively incorporating a subset of out-of-group samples 
remains challenging without a reliable metric to assess each sample’s
contribution. Therefore, a data-driven approach is crucial for effectively 
integrating out-of-group data, optimizing model performance for each 
target group, and ensuring the highest possible diagnostic precision 
across diverse populations.

To address these challenges, we propose SPARE (Subgroup
Performance-Aware Reweighting mEthod)-a unified sample reweight-
ing framework that aims to maximize subgroup performance by intel-
ligently selecting and weighting out-of-group data. A core difficulty in 
this task lies in balancing two conflicting needs: identifying samples that 
contribute to improving the target group’s model while avoiding those 
that introduce harmful distributional shifts. Instead of handling these 
two objectives independently, SPARE provides an elegant, unified solu-
tion by framing both utility and distribution similarity through a shared 
perspective: the distance between a sample and its relevant decision 
boundaries. Specifically, samples closer to the boundary of the diagnos-
tic classifier are more informative for model refinement, while those 
near the boundary of the group label predictor better align with the tar-
get group’s distribution. By integrating these dimensions into a unified 
scoring function, SPARE prioritizes samples that are both valuable and 
distributionally compatible, selectively incorporating beneficial out-of-
group data while mitigating the risks of distributional shift. This scoring-
based approach enables principled integration of out-of-group data to 
optimize subgroup performance for group-specific fmodels.

To validate the effectiveness of our approach, we focus on one of 
the most extensively studied tasks in medical fairness: skin disease di-
agnosis (Ansari et al., 2024; Chiu et al., 2023). Experiments were con-
ducted on two widely used dermatology datasets, where SPARE was

evaluated against the current state-of-the-art fairness methods. These 
baseline methods fall into two primary categories: those aiming to 
minimize performance disparities between groups, and those employ-
ing group-specific models or modules. Experimental results show that, 
rather than compromising overall model performance to reduce dispar-
ities, SPARE substantially improves performance for both groups. For 
instance, on the Fitzpatrick-17k dataset, SPARE achieves a 3.7% im-
provement for dark skin types and a 4.0% improvement for light skin 
types over state-of-the-art methods. Furthermore, although SPARE does 
not explicitly optimize for gap reduction, it nevertheless reduces per-
formance disparities across groups. On classical fairness metrics used 
to measure such disparities, SPARE exceeds or performs comparably 
to the best existing methods. This outcome indicates that the process 
of training group-specific models under SPARE confers greater perfor-
mance gains to underrepresented groups. A plausible explanation is that 
conventional training tends to allocate model capacity disproportion-
ately toward privileged groups, whereas SPARE rebalances this alloca-
tion during group-specific training. Overall, these results demonstrate 
that, relative to conventional fairness algorithms, SPARE provides a 
more practical and effective solution for improving fairness in clini-
cal applications. By enhancing performance across all groups without 
compromising diagnostic accuracy, SPARE contributes to a promising 
direction for advancing equitable medical AI systems.

The main contributions of this paper are as follows:

• We present a practice-oriented view that frames fairness as maxi-
mizing performance within each subgroup. Guided by this view, we 
investigate the subgroup-specific data selection problem, where us-
ing out-of-group data can improve generalizability but may dilute 
group-specific features.

• We develop SPARE, a sample-wise reweighting method that quanti-
fies each sample’s value through two factors-utility and similarity-to 
balance generalizability and group-specific representational fidelity 
during the training process.

• Extensive experimental results demonstrate that our approach sub-
stantially improves performance across all subgroups, while match-
ing or exceeding state-of-the-art methods on fairness metrics across 
multiple skin disease diagnosis datasets.

2.  Empirical analysis of group-specific training

In this section, we empirically demonstrate the importance of se-
lecting appropriate training data to achieve optimal performance for 
specific demographic groups. We adopt the Fitzpatrick-17k dataset for 
a skin disease classification task (Groh et al., 2021), where skin types 
T1-T3 are grouped as light skin and T4-T6 as dark skin. The dataset con-
tains 16,577 images representing 114 different skin conditions, and is 
split into train/validation/test sets with a ratio of 6:2:2. We use the same 
preprocessing and training settings as in Section 5, where full experi-
mental details are provided. In our experiments, we divide the dataset 
into several subsets based on Fitzpatrick skin types and evaluate the 
performance of different combinations of training subsets on both light 
and dark skin test groups. The results are presented in Fig. 1, where 
the x-axis denotes the specific combinations of training subsets, and the 
y-axis shows the testing accuracy for the light skin group (lighter line) 
and the dark skin group (darker line). From this figure, we observe the 
following key findings:

For the light-skin subgroup, performance does not peak when trained 
on the full dataset. Instead, using only skin types T1-T4 yields the best 
results, achieving a 2.1% improvement over training on the full dataset, 
as confirmed by McNemar’s test on paired predictions (𝑝 < .05). This 
result underscores the benefits of group-specific training, particularly 
for lower-performing groups in a single-model setting. Second, adding 
dark skin samples initially enhances light skin accuracy; however, as the 
proportion of dark skin samples increases further, the performance on 
light skin declines. While out-of-group data can enhance generalization, 
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Fig. 1. Left: Distribution of data volume across skin types in the Fitzpatrick-17k dataset. Right: Model performance trained with different skin type subsets and 
evaluated separately on light and dark skin. Adding dark skin samples initially enhances light skin accuracy; however, as the proportion of dark skin samples 
increases further, the performance on light skin declines.

it can also introduce distributional shifts that negatively impact perfor-
mance. This highlights the importance of quantifying both the benefits 
and potential risks of incorporating out-of-group data to optimize group-
specific performance. Third, for the originally well-performed dark-skin 
type, training exclusively on dark-skin data yields lower accuracy than 
training exclusively on light-skin data. A likely explanation is that the 
light-skin subset is substantially larger in size, so the benefit of its greater 
data volume outweighs the distribution shift it introduces, ultimately 
providing a more reliable signal for the dark-skin model.

These empirical findings highlight the need for data-driven ap-
proaches that optimize performance for individual subgroups. In partic-
ular, the results suggest that tailoring models to specific demographic 
groups can be especially beneficial for those that are originally under-
represented in the training data. This may be attributed to the limited 
influence of underrepresented subgroups on the shared feature space 
in generalized models, which often fail to capture their specific char-
acteristics. In contrast, subgroup-specific models can dedicate their full 
representational capacity to the target group, resulting in improved per-
formance, particularly for minority populations (Afrose et al., 2022).

3.  Related works

3.1.  Fairness falgorithms in healthcare

Most fairness methods in healthcare focus on reducing disparities 
across demographic groups by minimizing differences in performance 
metrics such as true positive rates and false positive rates. This is com-
monly formalized through criteria like Equalized Opportunity and Equal-
ized Odds (Hardt et al., 2016), which aim to ensure similar outcomes 
across sensitive attributes for patients with the same ground truth label.

Existing fairness approaches are commonly categorized into three 
groups: pre-processing, in-processing, and post-processing methods. Pre-
processing techniques aim to achieve fairness by modifying the train-
ing data before model development. For example, Xu et al. (2018), 
Ngxande et al. (2020), Lu et al. (2020) applies specific data transfor-
mations to remove discriminatory patterns, while Kamiran and Calders 
(2012) assigns varying weights to individual samples to suppress the 
influence of sensitive attributes. In-processing methods intervene dur-
ing model training to balance multiple objectives, typically aiming to 
jointly optimize for accuracy and fairness. A widely adopted strategy 
in this category is adversarial training, where an auxiliary adversary 
network attempts to predict sensitive attributes from learned represen-
tations, while the main model is trained to minimize the adversary’s 
success, thereby reducing the encoding of sensitive information (Alvi 
et al., 2018; Zhang et al., 2018; Wang et al., 2022). Another line of 
work focuses on regularization-based methods, which penalize correla-
tions between sensitive attributes and the model’s output to encourage 
fairness (Jung et al., 2021; Quadrianto et al., 2019). For instance, Gret-
ton et al. (2012) learns fair representations by distilling the fair infor-
mation from a teacher model into a student model using the Maximum 
Mean Discrepancy loss. More recently, techniques such as pruning and 

quantization have been explored to reduce bias by removing model com-
ponents that disproportionately contribute to disparities across sensitive 
groups (Chiu et al., 2023; Guo et al., 2024). Post-processing methods op-
erate after the model has been trained, adjusting its outputs to enhance 
fairness. A typical approach involves threshold adjustment, where dif-
ferent prediction thresholds are applied to different sensitive groups to 
satisfy fairness criteria (Hardt et al., 2016; Valera et al., 2018). In addi-
tion, Du et al. (2020) improves fairness by calibrating the model’s out-
put distribution to align with a specified fairness metric, using both the 
model’s raw predictions and sensitive attribute information as inputs.

These fairness-aware methods inherently face limitations at the 
Pareto frontier, where it becomes infeasible to simultaneously improve 
the performance of all groups (Dehdashtian et al., 2024). Consequently, 
such methods often leave at least one group in a suboptimal state. More 
concerningly, fairness constraints can lead to performance degradation 
across all groups in some cases, undermining the overall utility of the 
model (Wu et al., 2022; Duan et al., 2025). A notable example lies in 
the common practice of suppressing sensitive attributes to mitigate bias. 
While this strategy may appear effective in improving fairness metrics, 
it neglects the critical role these attributes play in clinical decision-
making. Attributes like skin type, race, and gender are not merely con-
founders but often inform diagnoses. For instance, skin type provides 
crucial information for assessing UV susceptibility (Caini et al., 2009; 
Narayanan et al., 2010), and disease prevalence varies by race and gen-
der (Narayanan et al., 2010; Gordon, 2013). In high-stakes clinical en-
vironments, compromising diagnostic accuracy for fairness can often be 
impractical and potentially hazardous. Therefore, fairness and accuracy 
should be treated not as trade-offs but as complementary goals to ensure 
reliable and effective medical care.

3.2.  Fairness through subgroup performance maximization

Beyond gap-reduction approaches, several studies have pursued fair-
ness by directly maximizing performance within each subgroup. In med-
ical imaging, Puyol-Antón et al. (2021) ftrained independent models for 
each demographic group using only in-group data. More recently, Zhang 
et al. (2022) introduced Stratified ERM for chest X-rays, which parti-
tions data by subgroup and learns distinct empirical risk minimizers, 
while the MEDFAIR benchmark (Zong et al., 2022) formalized a simi-
lar perspective under the notion of domain independence across multiple 
imaging modalities. These approaches share a common goal of enhanc-
ing subgroup-specific accuracy rather than minimizing disparities across 
groups.

Similar ideas appear outside the medical imaging domain, where 
fairness has been more broadly conceptualized in terms of subgroup-
specific performance. For instance, Wang et al. (2020) propose group-
specific classifiers with shared parameters that are optimized separately 
for each subgroup, while Dwork et al. (2018) design a decoupled clas-
sification framework where distinct classifiers are trained for differ-
ent groups. In addition, Mehrabi et al. (2021) provide a comprehen-
sive review of fairness methods, explicitly highlighting strategies that
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emphasize improving subgroup-level performance. Collectively, these 
works reinforce the perspective that fairness need not always be equated 
with reducing inter-group disparities, but can instead be framed as en-
suring that each subgroup reaches its maximum achievable accuracy.

Beyond fairness-specific literature, adjacent paradigms also resonate 
with this perspective. Multi-task learning (Evgeniou and Pontil, 2004; 
Agiza et al., 2024) and personalized federated learning (Luo and Wu, 
2022; Tan et al., 2022) both aim to balance knowledge transfer across 
groups or domains with the need for subgroup-specific adaptation. 
While these methods are not explicitly designed for fairness, their prin-
ciple of combining global generalization with local specialization aligns 
closely with our objective of maximizing subgroup performance.

While prior approaches also aim to achieve fairness without com-
promising accuracy by improving subgroup-specific performance, they 
typically regard each group as an isolated entity and train models using 
only in-group data. In contrast, our method extends this line of work by 
exploring the utility of out-of-group samples, showing that when incor-
porated strategically, such data can further enhance subgroup perfor-
mance. We validate this insight empirically and include representative 
subgroup-specific methods as baselines for comparison. It is also worth 
noting that, although optimizing subgroup performance does not inher-
ently guarantee improvements in traditional gap-based fairness metrics 
discussed in Section 3.1, in practice we often observe such metrics im-
proving as a byproduct, likely because lower-performing groups tend 
to achieve larger relative gains when subgroup-specific performance is 
maximized.

3.3.  Bridging fairness, domain shift and out-of-distribution generalization

A central cause of fairness issues in machine learning is the uneven 
distribution of data across demographic groups. When certain groups 
are underrepresented or exhibit unique feature-label relationships, mod-
els trained on aggregate data often generalize poorly to these groups. 
This performance gap is closely related to challenges studied in out-of-
distribution (OOD) generalization and domain adaptation, where mod-
els fail under distribution shifts between training and deployment con-
ditions (Quiñonero-Candela et al., 2022; Sun and Saenko, 2016).

In OOD generalization, the goal is to learn representations that re-
main robust across diverse domains, minimizing reliance on spurious 
correlations often introduced by majority-group patterns (Sagawa et al., 
2019). To address this, researchers have proposed techniques such as 
minimizing worst-case loss (Sagawa et al., 2019), pruning biased sam-
ples (Jain et al., 2024), and learning invariant representations (Ar-
jovsky et al., 2019). These strategies are conceptually aligned with fair-
ness methods that aim to reduce performance disparities by enforc-
ing group-invariant features. However, such approaches often discard 
group-specific characteristics, limiting their ability to achieve optimal 
performance within each individual distribution.

In contrast, domain adaptation focuses not on learning shared 
features across all domains, but on improving performance for a 
particular domain by transferring knowledge from related distribu-
tions (Ben-David et al., 2010). Adaptation methods include feature 
alignment (Ganin et al., 2016), domain-invariant representation learn-
ing (Cortes et al., 2019), and weighted empirical risk minimiza-
tion (Zhang et al., 2012; Bu et al., 2022). These methods are more 
aligned with our goal of group-specific optimization, where the objec-
tive is to maximize performance for a specific subgroup. However, our 
approach departs from traditional domain adaptation in two key ways. 
First, instead of treating each group as a monolithic domain, we eval-
uate cross-group samples at a finer, sample-wise granularity to assess 
their utility for improving target group performance. Second, we in-
troduce a principled mechanism that jointly considers both utility and 
distributional similarity when selecting which out-of-group samples to 
incorporate. This allows us to move beyond rigid domain boundaries 
and adaptively leverage the most beneficial examples, regardless of
origin.

Recent studies have begun exploring fairness generalization across 
domains and distributions, aiming to preserve fairness established in a 
source environment when deploying a model under distribution shifts 
in a new target environment. For example, Pham et al. (2023) seek to 
maintain both fairness and accuracy in domain generalization settings, 
while Liang et al. (2023) and Stan and Rostami (2024) investigate do-
main adaptation techniques to safeguard fairness in the face of distribu-
tional change. While such work on fairness robustness is valuable, our 
study focuses on a more fundamental challenge at the source. Rather 
than seeking to preserve fairness only after an external domain shift, 
we use the theoretical tools of domain adaptation to address the ini-
tial fairness disparities arising from subgroup differences. In our view, 
a “domain” need not be limited to environmental changes encountered 
after deployment; instead, each demographic group can be framed as 
its own domain. This reframing allows fairness to be pursued through 
a domain-aware perspective. To the best of our knowledge, we present 
the first systematic formulation of this objective, introducing a frame-
work that links fairness considerations with data-driven strategies for 
optimizing performance across subgroups.

4.  Methodology

4.1.  Problem formulation

Consider a dataset  = {(𝑥𝑖, (𝑦𝑖, 𝑐𝑖))}𝑁𝑖=1, where 𝑥𝑖 ∈  represents an 
input sample, and each sample is associated with a pair of labels (𝑦𝑖, 𝑐𝑖). 
Here, 𝑦𝑖 ∈  = {1, 2,… , 𝑘} denotes the class label, while 𝑐𝑖 ∈  = {0, 1}
represents a binary group label (e.g., gender, race). In this paper we fo-
cus on binary group labels for clarity, though our approach extends eas-
ily to multiple groups with minor modifications. We partition the dataset 
into two subsets, 0 and 1, corresponding to groups 0 and 1, respec-
tively. Our approach builds upon a basic ensemble model that dynami-
cally selects the group-specific classifier based on the input. This ensem-
ble consists of two group-specific models, 𝑓0 ∶  →  and 𝑓1 ∶  →  , 
trained exclusively on 0 and 1, respectively. Additionally, a group 
label predictor 𝑓𝑔 ∶  →  determines which group-specific model to 
apply for a given input.

Our goal is to optimize the group-specific models 𝑓0 and 𝑓1, such 
that 𝑓0 maximizes accuracy on 0 and 𝑓1 maximizes accuracy on 1. To 
achieve this, we incorporate out-of-group data to improve each model. 
Without loss of generality, the following method description focuses on 
maximizing the performance of Group 0. That is, we treat Group0′s 
dataset (0) as the primary set and Group1′s dataset (1) as the auxil-
iary set, selecting relevant samples from 1 to enhance 𝑓0. The process 
is symmetric when optimizing 𝑓1. In the following sections, we denote 
𝑓0 as 𝑓𝑐 to emphasize its role as the classifier for Group 0. A direct ap-
proach to improving f𝑓𝑐 is to identify samples from 1 that improve 
its performance on 0 when incorporated. However, this selection pro-
cess is NP-hard and inherently imposes a binary classification of sample 
importance. To address this problem, instead of selecting samples, this 
paper assigns each sample a weight that reflects its importance and can 
be anywhere between 0 and 1, i.e., 𝑤 ∈ [0, 1].

4.2.  The value of additional data: Utility vs. similarity

To improve the group-specific model 𝑓𝑐 trained on Group 0 data 
0, we examine how incorporating additional samples from the auxil-
iary group 1 impacts a model trained for Group 0. Intuitively, more 
training data can reduce generalization error by decreasing variance 
from data fluctuations, generally improving performance (Hastie et al., 
2009; Duda et al., 1973). However, the benefit of using samples from 
1 depends critically on its alignment with the distribution of 0. While 
additional data can stabilize learning, incorporating samples from a mis-
matched distribution can introduce bias and degrade performance.

To guide the design of our sample weighting method, we formalize 
this trade-off and derive an upper bound on the generalization error 
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Fig. 2. The illustration of the distances from a sample to the decision boundaries 
of the diagnosis classifier and the group predictor. These distances can serve as 
proxies for utility and similarity, respectively.

of a model 𝑓𝑤 trained on a weighted dataset 𝑤, where each sample 
𝑥𝑖 ∈ 0 ∪1 is assigned a weight 𝑤𝑖 ∈ [0, 1]. Let Pr𝑤

(𝑥𝑖) ∝ 𝑤𝑖 represent 
the empirical distribution induced by these weights. The bound on the 
excess error when evaluating on Group 0 is given by:

𝑒0(𝑓𝑤) − 𝑒0(𝑓 ∗
0 ) ≤

∑


𝐺𝑖

⏟⏟⏟
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⋅ ||
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|
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(1)

where 𝑓 ∗
0  is the ideal optimal model for Group 0, 𝐺𝑖 = 𝓁(𝑓𝑤(𝑥𝑖), 𝑦𝑖)

is the empirical loss incurred on sample 𝑥𝑖, ||
|

Pr𝑤
(𝑥𝑖) − Pr0

(𝑥𝑖)
|

|

|

 cap-
tures the degree of distributional mismatch between the sample-wise 
weighted distribution 𝑤 and the Group 0 distribution 0, |𝑤| is the 
effective sample size of the weighted dataset, and 𝑐 is a constant. The 
detailed proof of Eq. (1) is in the Appendix A.1.

This bound exposes three competing factors that determine the ben-
efit of the auxiliary data from 1: (i) utility 𝐺𝑖 of each sample for train-
ing the model, (ii) similarity between the sample’s distribution under 𝑤
and that of 0, and (iii) the effective dataset size induced by the weight-
ing. Accordingly, our goal is to learn sample weights that jointly opti-
mize these dimensions-prioritizing samples that are both informative 
and distributionally aligned, while naturally benefiting from increased 
data volume to enhance the model performance on 0.

Guided by this theoretical insight, we develop a weighting mech-
anism that quantifies both utility and similarity, as described in the 
following section. We do not explicitly regularize for sample size, as 
our weighting function inherently balances informativeness and distri-
butional alignment in a continuous manner. As a result, the effective 
size of the training set arises implicitly from the learned weight distri-
bution. Introducing an additional constraint on sample count would be 
redundant and unlikely to offer further benefit over the selection pro-
cess.

4.3.  Quantifying utility and similarity

4.3.1.  Distance to decision boundaries as a proxy
To effectively incorporate out-of-group data, it is essential to quan-

tify both a sample’s utility in improving classification and its similarity 
to Group 0. These two factors are illustrated in Fig. 2, where the fea-
ture space contains samples from both Group 0 and Group 1, each la-
beled as positive (P) or negative (N). The decision boundary of Group 0’s

diagnosis classifier 𝑓𝑐 (dashed line) separates positive and negative 
cases, while the group label predictor 𝑓𝑔 (solid line) distinguishes be-
tween Group 0 and Group 1 samples. A sample 𝑥’s utility is determined 
by its distance to the decision boundary of 𝑓𝑐 -the closer it is, the more 
likely it is to be misclassified, making it more valuable for refining 
Group0′s model. Similarly, the similarity is measured by 𝑓𝑔 ’s classifi-
cation. If 𝑓𝑔 predicts 𝑥 belongs to Group 0, it introduces no distribution 
shift. If it is instead classified as Group 1, its similarity increases as it 
gets closer to Group 0, indicating a smaller distribution gap.

Motivated by this observation, we define two key distances for a sam-
ple 𝑥: f𝑑𝑥𝑐 , the distance to the decision boundary of 𝑓𝑐 , which quantifies 
utility as samples near the boundary provide greater value for model 
refinement, and 𝑑𝑥𝑔 , the distance to the decision boundary of 𝑓𝑔 , which 
represents distribution similarity—a smaller 𝑑𝑥𝑔  indicates greater simi-
larity to Group 0. If 𝑓𝑔 classifies 𝑥 as part of Group 0, we assume no 
distribution shift and set 𝑑𝑥𝑔 = 0.

To balance these two distances, we define the combined distance as:
𝑑(𝑥) = 𝛼𝑑𝑥𝑐 + (1 − 𝛼)𝑑𝑥𝑔 . (2)

Here, 𝛼 controls the trade-off between utility and similarity. A smaller 
𝑑(𝑥) indicates a higher weight to 𝑥, ensuring the framework prioritizes 
samples that are both informative and distributionally relevant.

4.3.2.  Computing decision boundary distance via minimal perturbation
While the simplified illustration in Fig. 2 suggests that a perpendic-

ular distance could be computed analytically, in practice this is diffi-
cult to obtain directly. In high-dimensional, non-linear classifiers such 
as deep neural networks, the decision boundary forms a highly com-
plex, non-convex surface for which no closed-form representation ex-
ists (Goodfellow et al., 2014). To estimate how close a sample 𝑥 is to 
a model’s decision boundary, we draw inspiration from adversarial at-
tack techniques (Carlini and Wagner, 2017), which are designed to find 
small perturbations that change a model’s prediction. These techniques 
offer a principled way to quantify the local robustness of a model’s pre-
diction for a given input. We adopt this approach for two reasons. First, 
directly measuring the minimal perturbation required to flip a classifica-
tion provides a concrete, model-sensitive estimate of how close 𝑥 lies to 
the decision boundary. Compared to proxy measures such as confidence 
scores or margin values, this perturbation-based metric more accurately 
reflects the local geometry of the classifier’s decision surface. Second, be-
cause our method ultimately involves weighting images based on their 
relevance and informativeness, it is crucial to ground these metrics in 
the model’s actual behavior under input variations, rather than heuristic 
approximations.

As illustrated in Fig. 3, for a given input 𝑥, we compute its distance 
to a decision boundary by determining the smallest perturbation 𝛿 such 
that the model’s prediction changes. Formally, this is defined as:
min
𝛿

𝐷(𝑥, 𝑥 + 𝛿) s.t. 𝐶(𝑥 + 𝛿) ≠ 𝐶(𝑥), (3)

where 𝐷(⋅) is a distance function-specifically the 𝐿2 norm-and 𝐶(⋅) is 
the model’s hard classification function (either 𝑓𝑐 for utility or 𝑓𝑔 for 
similarity). A smaller perturbation norm ‖𝛿‖2 indicates that the sample 
𝑥 is closer to the decision boundary, and thus either more informative 
for refining decision boundaries (in the case of 𝑓𝑐) or more similar to 
the target 0’s distribution (in the case of 𝑓𝑔).

However, solving this problem directly is challenging due to the non-
linearity and discontinuity of the classification constraint. To make it 
tractable, we adopt a relaxed formulation based on soft labels. Specifi-
cally, we maximize the cross-entropy loss between the predicted softmax 
outputs before and after perturbation, encouraging a change in predic-
tion without relying on a hard decision threshold. The relaxed optimiza-
tion becomes:
min
𝛿

‖𝛿‖2 − 𝑐 ⋅ (𝐶̂(𝑥), 𝐶̂(𝑥 + 𝛿)), (4)

where 𝐶̂(⋅) denotes the softmax output of the model and  is the cross-
entropy loss between original and perturbed outputs. The constant 𝑐
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Fig. 3. The distance between a sample and a model’s decision boundary is estimated using adversarial perturbations. For the group predictor, the minimal perturbation 
required to alter the prediction to group 0 is computed. For the diagnosis classifier, the predicted class 𝑦 is first identified, and the smallest perturbation needed to 
change the output to any 𝑦′ ≠ 𝑦 is then computed.

Algorithm 1 Training algorithm for SPARE.
Input Full dataset  = 0 ∪1; diagnosis model 𝑓𝑐 ; group model 𝑓𝑔
Output Optimized group-specific model 𝑓 ∗

𝑐
1: Phase 1: Compute sample weights
2: for each sample 𝑥 ∈  do
3:  Compute 𝑑𝑥𝑐  using 𝑓𝑐 and 𝑑𝑥𝑔  using 𝑓𝑔 (Section 4.3)
4:  Compute 𝑑(𝑥) = 𝛼 ⋅ 𝑑𝑥𝑐 + (1 − 𝛼) ⋅ 𝑑𝑥𝑔
5:  Set 𝑤𝑥 = 𝑒−𝑑(𝑥)

6: end for
7: Phase 2: Train group-specific model
8: Train 𝑓 ∗

𝑐  on  using fixed weights {𝑤𝑥}
9: return 𝑓 ∗

𝑐

controls the balance between minimizing perturbation size and maxi-
mizing prediction change. We solve this optimization using an iterative 
gradient-based approach that refines 𝛿, progressively minimizing the 
objective until a classification flip is achieved.

4.3.3.  Final weighting function
The resulting perturbation norm ‖𝛿‖2 serves as the distance metric 

for 𝑑𝑥𝑐  and 𝑑𝑥𝑔 . These distances are then combined (by Eq. (2)) to deter-
mine the weight assigned to 𝑥, ensuring that SPARE prioritizes samples 
that are both close to decision boundaries and distributionally aligned 
with 0. Since the distribution of the calculated 𝑑(𝑥) is highly skewed, 
we ultimately use 𝑤𝑥 = e−𝑑(𝑥) to map 𝑑(𝑥) inversely to a range between 
0 and 1 to obtain the final weight of an image 𝑥. Algorithm 1 shows the 
training procedure for obtaining the group-specific model for Group 0.

5.  Experiments and results

To evaluate the effectiveness of the proposed method, we conduct 
comprehensive experiments designed to answer the following research 
questions (RQs):

• RQ1: General performance comparison. How does the proposed 
method perform compared to state-of-the-art bias mitigation ap-
proaches across different backbone architectures?

• RQ2: Weight distribution analysis. How do the weight distri-
butions differ across demographic groups in group-specific models 
trained using our method?

• RQ3: Impact of weighting strategies. Our method assigns individ-
ual sample weights, subsequently normalized to the range [0, 1] via 
an exponential mapping. To what extent do alternative weighting 
strategies influence model performance?

• RQ4: Utility vs. similarity comparison. How does the hyperparam-
eter 𝛼, which balances utility and similarity in the weighting func-
tion, affect overall performance?

• RQ5: Ablation study of the combined distance. How do the utility 
and similarity components, individually and in alternative formula-
tions, contribute to the overall effectiveness of the proposed com-
bined distance?

• RQ6: Resource-performance trade-off. In scenarios with limited 
computational resources, where training separate models per group 
is infeasible, how does the use of partially shared models impact 
performance?

5.1.  Datasets, training protocol and metrics

Dataset and Training Details. The proposed methods are evalu-
ated on two skin disease classification datasets: the Fitzpatrick-17k 
dataset (Groh et al., 2021) and the ISIC 2019 challenge dataset (Com-
balia et al., 2019; Tschandl et al., 2018). The Fitzpatrick-17k dataset 
comprises 16,577 images representing 114 different skin conditions. We 
group skin types 1–3 as light skin and 4–6 as dark skin, following the 
same settings as in Section 2. ISIC 2019 dataset contains f25,331 im-
ages across 8 categories. While gender is frequently selected as the sen-
sitive attribute in fairness-aware learning, we instead choose age due to 
its quasi-continuous nature, which facilitates finer subgroup partition-
ing and enables more nuanced downstream visualization. Accordingly, 
we divided the dataset into young and old groups for analysis. A stan-
dard preprocessing step for both datasets involves resizing all the im-
ages to a uniform size of 128×128 pixels. Various techniques such as 
random horizontal flipping, vertical flipping, rotation, scaling, and au-
toaugment are used to augment the data, consistent with (Cubuk et al., 
2018). The dataset is split into train, validation, and test with a ratio 
of 6:2:2. Unless otherwise specified, we use ResNet-18 (He et al., 2016) 
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as the backbone. All models are trained for 200 epochs using the SGD 
optimizer, with a fixed batch size of 128 to ensure consistency across 
methods. For the learning rate, we performed a small validation-based 
search over {10−2, 10−3, 10−4} and selected 10−3, which yielded the best 
performance; this setting was applied uniformly to both SPARE and all 
baselines. For the proposed SPARE method, the trade-off parameter 𝛼
in Eq. (2) is analyzed in detail in Section 5.2.4, with 𝛼 = 0.5 used as the 
default unless otherwise specified. The adversarial perturbation balanc-
ing parameter 𝑐 is set to 100 following (Carlini and Wagner, 2017). We 
repeat this process three times and report the average to ensure consis-
tency of the results. Since SPARE is designed to train separate models 
for each group, we report the performance of each group using its cor-
responding group-specific model in the results.
Metrics. Since the fairness objective of this paper is to improve diag-
nostic performance for every specific group, we adopt commonly used 
classification metrics-precision, recall, and F1-score-as the main criteria 
and report the group-wise result to assess model effectiveness. While 
our proposed approach does not explicitly minimize inter-group dispar-
ities in the traditional fairness optimization sense, we report widely used 
fairness metrics to enable comprehensive comparisons with prior state-
of-the-art methods. Specifically, we evaluate fairness using multi-class 
versions of Equalized Opportunity (Eopp) and Equalized Odds (Eodd), fol-
lowing the definitions and implementations in Wu et al. (2022). To as-
sess the overall trade-off between fairness and predictive performance, 
we also report the Fairness-Aware Trade-off Evaluation (FATE) metric in-
troduced by Xu et al. (2023), where higher FATE scores indicate a more 
favorable balance between accuracy and fairness. Specifically, the FATE
metric is computed as:

𝐹𝐴𝑇𝐸𝐹𝐶 =
𝐴𝐶𝐶𝑚 − 𝐴𝐶𝐶𝑏

𝐴𝐶𝐶𝑏
− 𝜆

𝐹𝐶𝑚 − 𝐹𝐶𝑏
𝐹𝐶𝑏

(5)

Here, 𝐴𝐶𝐶 denotes the model’s predictive performance, for which 
we use the F1-score, and 𝐹𝐶 refers to the fairness criterion (e.g., Eopp or 
Eodd). The subscripts 𝑚 and 𝑏 represent the bias-mitigated and baseline 
models, respectively. The hyperparameter 𝜆 controls the relative weight 
of fairness in the overall evaluation; following (Xu et al., 2023), we set 
𝜆 = 1 in all experiments.

5.2.  Result and discussions

5.2.1.  RQ1: Performance comparison with state-of-the-art
Baselines. We compare SPARE with various bias mitigation baselines. 
Vanilla refers to models trained directly on ResNet-18 without any 
fairness intervention. FairAdaBN adapts batch normalization layers to 
sensitive attributes (Xu et al., 2023). For this method, we followed 
the grid search range reported in the original paper ({0.1, 1.0, 2.0}) 
for its fairness-constraint parameter 𝛼 and selected 𝛼 = 1.0. SCP-
FairPrune (Kong et al., 2024) and FairQuantize (Guo et al., 2024) en-
hance fairness through pruning and quantization, respectively. Since 
our dataset and backbone settings match those used in their papers, 
we directly adopted the reported hyperparameters: for SCP-FairPrune, 
prc = 2% and 𝑛 = 3; for FairQuantize, we used a quantization ratio of 
80% with 𝛽 = 0.778 on ISIC2019, and a ratio of 20% with 𝛽 = 1.0 on 
Fitzpatrick-17k. We also evaluate fairness methods based on group-
specific training. GroupModel (Puyol-Antón et al., 2021) trains a sep-
arate model per group using only its in-group data, while DomainIn-
dep (Wang et al., 2020) learns group-specific classifiers with shared 
parameters. In addition, we include two methods originally developed 
for broader group/domain adaptation but conceptually aligned with 
subgroup performance maximization. Regularized Multi-Task Learning 
(MTL) (Evgeniou and Pontil, 2004) encourages related groups to share 
information through joint parameterization while still allowing group-
specific specialization, making it a natural baseline in our setting. AP-
PLE (Luo and Wu, 2022) learns group-specific Directed Relationship 
(DR) weights that determine how much each subgroup borrows from 

others, which parallels our goal of leveraging out-of-group samples to 
improve subgroup models.
Results on ISIC 2019 dataset. Table 1 reports the results on the ISIC 
2019 dataset, demonstrating that SPARE consistently outperforms all 
baselines in accuracy for both the young and old groups. For instance, 
compared to the ResNet-18 backbone, SPARE achieves a 3.7% improve-
ment in F1-score for the young group and a 3.8% improvement for the 
old group. Such gains are particularly valuable in high-stakes medical 
applications, where it is crucial to avoid compromising the performance 
of well-served groups or failing to capture the group-specific characteris-
tics of underrepresented populations. By training group-specific models, 
SPARE addresses both concerns, enabling more equitable and effective 
representation across demographic groups.

Meanwhile, SPARE also demonstrates strong performance on fair-
ness metrics. It ranks first in both Eopp0 and Eodd, and second in 
Eopp1. Compared to the baseline, SPARE reduces Eopp0 by 16.7%, 
Eopp1 by 26.5%, and Eodd by 30.5%. This suggests that even with-
out explicitly incorporating bias mitigation constraints, SPARE effec-
tively narrows the disparity between demographic groups. In particular, 
the group-specific approaches (GroupModel, DomainIndep, MTL, APPLE 
and SPARE) yield larger performance gains for the underrepresented 
younger subgroup compared to non-group-specific baselines FairAdaBN, 
SCP-FairPrune, and FairQuantize. For example, group-specific models 
improve the younger group’s F1-score from 0.743 (vanilla ResNet-18) 
to 0.780 (SPARE) and 0.752 (DomainIndep), whereas some non-group-
specific methods such as FairQuantize and DomainIndep fail to improve 
the younger subgroup and even lower its performance. This may be 
because global models trained to fit all groups tend to focus dispro-
portionately on overrepresented groups, thereby suppressing the learn-
ing of group-varying features associated with minority groups. In con-
trast, training group-specific models enables better representation of 
each group’s unique features, with underrepresented groups benefiting 
more substantially from this tailored optimization. Given its strong per-
formance on both accuracy and fairness metrics, SPARE achieves sub-
stantially higher FATE scores compared to other baseline models. For 
instance, its FATE values computed using Eopp0, Eopp1, and Eodd sur-
pass those of the second-best baselines by 36.5%, 11.7%, and 47.9%, 
respectively.

Notably, although GroupModel, DomainIndep, MTL, APPLE and 
SPARE all adopt group-specific training strategies and achieve relatively 
higher accuracy compared to other bias mitigation methods, SPARE 
stands out by attaining the best overall performance in both accu-
racy and fairness. These results suggest that achieving effective group-
specific training is non-trivial, underscoring the unique advantage of 
SPARE’s weighting mechanism, which integrates both sample-level sim-
ilarity and utility to guide model learning.
Results on Fitzpatrick-17k dataset. Table 2 presents the results of 
our method applied to the ResNet-18 backbone on the Fitzpatrick-17k 
dataset. SPARE outperforms all baseline methods across all accuracy 
metrics. In terms of fairness, it achieves the best performance on Eopp1 
and ranks second on both Eopp0 and Eodd. Consistent with the results 
observed on the ISIC 2019 dataset, these findings further support the 
effectiveness of training group-specific models in both narrowing inter-
group performance disparities and maximizing per-group performance-
an approach that is particularly well-suited for high-stakes medical ap-
plications. Furthermore, SPARE demonstrates the highest FATE scores 
by a considerable margin. Specifically, its FATE values based on Eopp0, 
Eopp1, and Eodd exceed those of the second-best methods by 25.6%, 
36.1%, and 63.6%, respectively.
Comparison with state-of-the-art in different backbone. To further 
evaluate the generalizability of our approach, we replaced the backbone 
model with VGG-11 (Simonyan and Zisserman, 2014) and replicated the 
experiments described in Section 5.2.1. The results are presented in Ta-
ble 3, which report performance on the ISIC 2019 and Fitzpatrick-17k 
datasets. Our method achieves the highest performance across all accu-
racy metrics on both datasets, while also maintaining competitive results 

Medical Image Analysis 109 (2026) 103950 

7 



G. Xu et al.

Table 1 
Results of accuracy and fairness on ISIC 2019 dataset using ResNet-18 backbone.

 Accuracy  Fairness
 Method  Age  Precision  Recall  F1-score  Eopp0 ↓ / FATE ↑  Eopp1 ↓ / FATE ↑  Eodd ↓ / FATE ↑

ResNet-18
 Young  0.718  0.786  0.743

0.018 / 0.000 0.102 / 0.000 0.558 / 0.000 Old  0.764  0.765  0.758

GroupModel
 Young  0.724  0.782  0.749

0.021 / −0.160 0.116 / −0.131 0.560 / 0.003 Old  0.777  0.758  0.762

DomainIndep
 Young  0.723  0.777  0.752

0.016 / 0.117 0.075 / 0.271 0.492 / 0.124 Old  0.740  0.769  0.758

MTL
 Young  0.745  0.756  0.747

0.018 / −0.013 0.082 / 0.207 0.555 / 0.014 Old  0.767  0.766  0.766

APPLE
 Young  0.743  0.769  0.749

0.016 / 0.118 0.075 / 0.277 0.539 / 0.044 Old  0.773  0.764  0.764

FairAdaBN
 Young  0.712  0.772  0.739

0.016 / 0.104 0.073 / 0.278 0.458 / 0.173 Old  0.739  0.755  0.752

SCP-FairPrune
 Young  0.722  0.780  0.746

0.016 / 0.114 0.089 / 0.131 0.521 / 0.070 Old  0.759  0.764  0.760

FairQuantize
 Young  0.707  0.781  0.738 0.015 / 0.159 0.088 / 0.130 0.420 / 0.240 Old  0.762  0.765  0.752

SPARE
 Young  0.768  0.803  0.780 0.015 / 0.217 0.075 / 0.315 0.388 / 0.355 Old  0.809  0.785  0.796

Table 2 
Results of accuracy and fairness on Fitzpatrick-17k dataset using ResNet-18 backbone. 

 Accuracy  Fairness
 Method  Skin Tone  Precision  Recall  F1-score  Eopp0 ↓ / FATE ↑  Eopp1 ↓ / FATE ↑  Eodd ↓ / FATE ↑

ResNet-18
 Dark  0.512  0.511  0.490

0.0031 / 0.000 0.332 / 0.000 0.180 / 0.000 Light  0.467  0.468  0.449

GroupModel
 Dark  0.511  0.512  0.492

0.0030 / 0.045 0.320 / 0.048 0.164 / 0.107 Light  0.475  0.472  0.453

DomainIndep
 Dark  0.501  0.522  0.492

0.0030 / 0.041 0.320 / 0.045 0.163 / 0.103 Light  0.465  0.479  0.459

MTL
 Dark  0.514  0.529  0.500

0.0030 / 0.051 0.302 / 0.110 0.164 / 0.108 Light  0.458  0.488  0.454

APPLE
 Dark  0.521  0.517  0.491

0.0030 / 0.047 0.312 / 0.075 0.171 / 0.064 Light  0.477  0.483  0.466

FairAdaBN
 Dark  0.493  0.495  0.469

0.0030 / 0.007 0.302 / 0.065 0.171 / 0.024 Light  0.450  0.443  0.435

SCP-FairPrune
 Dark  0.512  0.512  0.490

0.0030 / 0.049 0.289 / 0.147 0.164 / 0.106 Light  0.490  0.472  0.469

FairQuantize
 Dark  0.498  0.513  0.480 0.0028 / 0.082 0.291 / 0.109 0.156 / 0.118 Light  0.459  0.470  0.448

SPARE
 Dark  0.534  0.542  0.517

0.0030 / 0.103 0.289 / 0.200 0.158 / 0.193 Light  0.508  0.499  0.488

in fairness metrics. Compared to the baseline VGG-11 model, SPARE 
yields average improvements across two datasets of 21.1%, 36.4%, and 
29.5% in Eopp0, Eopp1, and Eodd, respectively. Additionally, it attains 
the highest FATE scores among all methods on both datasets. These find-
ings underscore the robustness of our approach across different neural 
network architectures.

5.2.2.  RQ2: Weight distribution analysis on group-specific models
Fig. 4a presents the weight distribution boxplots for data with dif-

ferent Fitzpatrick skin types from the Fitzpatrick-17k dataset, evalu-
ated using two group-specific models: the light-skin model (left) and 
the dark-skin model (right). The results show that for in-group data, 
most weights remain high, typically exceeding 0.8. In contrast, for

out-of-group data, weights tend to decrease as the distance from the 
group increases in terms of Fitzpatrick skin type. Furthermore, we ob-
serve that the light-skin model assigns relatively lower weights to dark-
skin samples, whereas the dark-skin model tends to place slightly higher 
weights on light-skin data. A Mann–Whitney U test confirmed that this 
difference is statistically significant (𝑝 < .001), although the effect size 
is small (Cliff’s 𝛿 ≈ −0.04). These nuanced but consistent asymmetries 
suggest that the light-skin model performance may be more dependent 
on in-group data, potentially due to a greater distributional mismatch 
between dark-skin samples and the light-skin subgroup. This interpre-
tation aligns with our empirical findings in Section 2: despite having 
a larger training set, the light-skin group underperforms in the global 
model. This may be due to dark-skin samples being farther from the 
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Table 3 
Results of accuracy and fairness on Fitzpatrick-17k dataset and ISIC 2019 dataset using VGG-11 backbone.

 Accuracy  Fairness
 Method  Group  Precision  Recall  F1-score  Eopp0 ↓ / FATE ↑  Eopp1 ↓ / FATE ↑  Eodd ↓ / FATE ↑
 Fitzpatrick 17k Dataset

VGG-11
 Dark  0.493  0.490  0.476

0.0032 / 0.000 0.282 / 0.000 0.142 / 0.000 Light  0.435  0.447  0.422

GroupModel
 Dark  0.496  0.486  0.474

0.0029 / 0.101 0.273 / 0.040 0.136 / 0.049 Light  0.441  0.459  0.430

DomainIndep
 Dark  0.499  0.488  0.475

0.0030 / 0.068 0.276 / 0.028 0.143 / 0.003 Light  0.443  0.450  0.427

MTL
 Dark  0.493  0.488  0.473

0.0028 / 0.145 0.271 / 0.049 0.135 / 0.082 Light  0.459  0.449  0.439

APPLE
 Dark  0.497  0.482  0.473

0.0030 / 0.093 0.273 / 0.064 0.143 / 0.023 Light  0.457  0.452  0.440

FairAdaBN
 Dark  0.487  0.478  0.469

0.0030 / 0.044 0.277 / 0.001 0.138 / 0.012 Light  0.426  0.434  0.412

SCP-FairPrune
 Dark  0.494  0.496  0.478

0.0029 / 0.115 0.277 / 0.038 0.133 / 0.089 Light  0.451  0.454  0.438

FairQuantize
 Dark  0.482  0.474  0.461 0.0028 / 0.086 0.268 / 0.013 0.129 / 0.052 Light  0.422  0.427  0.402

SPARE
 Dark  0.512  0.517  0.492 0.0028 / 0.196 0.267 / 0.125 0.130 / 0.160 Light  0.474  0.472  0.469

 ISIC 2019 Dataset

VGG-11
 Young  0.669  0.724  0.687

0.023 / 0.000 0.150 / 0.000 0.078 / 0.000 Old  0.758  0.798  0.766

GroupModel
 Young  0.675  0.722  0.688

0.021 / 0.130 0.116 / 0.340 0.060 / 0.128 Old  0.731  0.802  0.762

DomainIndep
 Young  0.677  0.724  0.689

0.021 / 0.090 0.103 / 0.316 0.051 / 0.345 Old  0.758  0.796  0.766

MTL
 Young  0.669  0.728  0.688

0.022 / 0.042 0.108 / 0.279 0.060 / 0.229 Old  0.720  0.773  0.747

APPLE
 Young  0.666  0.739  0.692

0.023 / 0.005 0.095 / 0.372 0.072 / 0.082 Old  0.752  0.773  0.760

FairAdaBN
 Young  0.643  0.717  0.663 0.018 / 0.196 0.084 / 0.418 0.060 / 0.209 Old  0.727  0.770  0.748

SCP-FairPrune
 Young  0.662  0.724  0.683

0.020 / 0.125 0.098 / 0.341 0.068 / 0.123 Old  0.745  0.792  0.761

FairQuantize
 Young  0.657  0.718  0.676

0.019 / 0.163 0.088 / 0.403 0.060 / 0.220 Old  0.743  0.785  0.755

SPARE
 Young  0.713  0.765  0.724 0.018 / 0.369 0.090 / 0.565 0.052 / 0.398 Old  0.786  0.814  0.789

group label predictor’s decision boundary, which allows them to domi-
nate the shared representation space and shift the model’s focus toward 
dark-skin-specific features.

Similarly, Fig. 4b shows the weight distributions across age groups 
in the ISIC 2019 dataset for two group-specific models: the young model 
(left) and the old model (right). To enable clearer visualization, we di-
vided the age range into six categories: 1 (0-15), 2 (16-30), 3 (31-45), 4 
(46-60), 5 (61-75), and 6 (76-90). Compared to the more structured 
trends observed in Fitzpatrick-17k, the age-based results appear less 
regular. For example, in the old model, age group 2 (16-30) receives 
a weight similar to or slightly higher than group 3 (31-45). This may 
be attributed to the fact that, unlike skin tone, age-related changes are 
less visually distinct in skin images-particularly among individuals aged 
16 to 45, where textural changes are subtle and difficult to detect vi-
sually. Overall, the observed trend-that each group-specific model as-
signs higher weights to in-group data and gradually decreases weights 
as the group difference increases-reflects the intended effect of our de-
sign, where weights are derived from distances to the corresponding 

group-specific decision boundary. In conjunction with the performance 
gains reported fin Section 5.2.1, these results suggest that the proposed 
group-specific weighting scheme effectively captures group distinctions 
and contributes to improved fairness.

5.2.3.  RQ3: Impact of weighting strategies
In this section, we examine alternative strategies for converting the 

combined distance 𝑑(𝑥) (defined in Section 4.3) into sample weights. 
Specifically, given a set of samples each associated with a distance score 
𝑑(𝑥), the question is how to map these scores into weights. We compare 
our proposed continuous weighting in SPARE against several classical 
alternatives, as shown in Table 4. GroupWeight assigns a fixed weight 
to all samples within a group, without accounting for intra-group vari-
ation (Huang et al., 2016). Selection applies a binary threshold: sam-
ples with scores above the threshold receive a weight of 1, while oth-
ers are assigned a weight of 0. Ranking sorts samples by their score 
and assigns weights based on their percentile rank (Roszkowska, 2013). 
Experimental results show that the weighting strategy used in SPARE
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Table 4 
Performance comparison across weighting strategies on Fitzpatrick-17k and ISIC 2019 datasets.

 Fitzpatrick-17k  ISIC 2019
 Skin Tone  Precision  Recall  F1  Age  Precision  Recall  F1

GroupWeight
 Light  0.483  0.477  0.457  Young  0.742  0.797  0.762
 Dark  0.514  0.515  0.495  Old  0.785  0.768  0.772

Selection
 Light  0.498  0.485  0.476  Young  0.749  0.794  0.764
 Dark  0.529  0.538  0.512  Old  0.789  0.771  0.775

Ranking
 Light  0.481  0.480  0.457  Young  0.731  0.792  0.754
 Dark  0.512  0.513  0.492  Old  0.779  0.756  0.764

SPARE
 Light  0.508  0.499  0.488  Young  0.768  0.803  0.780
 Dark  0.534  0.542  0.517  Old  0.809  0.785  0.796

Fig. 4. Sample weight distribution for the (a) light and dark skin models on 
Fitzpatrick-17k dataset and (b) young and old models on ISIC 2019 dataset.

outperforms all alternatives across both datasets. Selection ranks sec-
ond, suggesting that binary filtering can yield reasonably good perfor-
mance, though it lacks the granularity of continuous weighting. Both 
GroupWeight and Ranking perform less effectively. This may be at-
tributed to GroupWeight’s inability to capture within-group heterogene-
ity, and to Ranking’s reliance on carefully tuned mappings between rank 
percentiles and assigned weights. Overall, these findings further support 
the effectiveness of SPARE’s weighting mechanism. Its simple yet power-
ful design enables sample-level weighting based on both similarity and 
utility, providing a fine-grained way to capture the informativeness of 
individual data points across multiple dimensions.

5.2.4.  RQ4: Utility vs. similarity comparison through different 𝛼 values
Fig. 5 illustrates the performance of two group-specific models on the 

Fitzpatrick-17k and ISIC 2019 datasets under varying values of 𝛼, which 
controls the trade-off between similarity and utility in the data weight-
ing function. Specifically, 𝛼 = 0 indicates that only similarity is consid-
ered, while 𝛼 = 1 means that only utility determines the weight. The 
results show that, on the Fitzpatrick-17k dataset, the light-skin model 
achieves optimal performance at 𝛼 = 0.4, while the dark-skin model 
peaks at 𝛼 = 0.6, suggesting that similarity plays a more dominant role 
in the light-skin model. For the ISIC 2019 dataset, both the young and 

old models perform best at 𝛼 = 0.5, indicating the value of balancing 
both factors.

Across both datasets, models trained using only similarity informa-
tion (𝛼 = 0) consistently outperform those using only utility (𝛼 = 1). This 
highlights the central importance of similarity in guiding sample selec-
tion for group-specific modeling, as it directly captures the distributional 
alignment between samples and their target group. Utility, meanwhile, 
also contributes to model effectiveness, but serves more as a comple-
mentary signal modulating the relative influence of samples based on 
their estimated informativeness. Together, the two dimensions provide 
a flexible and principled basis for weighting data in group-specific model 
training.

5.2.5.  RQ5: Ablation study of the combined distance
To further validate the design of the combined distance, we con-

duct an ablation study that systematically examines the contribution of 
its utility and similarity components. While the previous analysis varied 
the trade-off parameter 𝛼, it remained unclear whether both components 
are individually necessary and whether alternative formulations could 
provide comparable benefits. Ablation is therefore crucial to verify that 
our design is not only effective but also essential. We select three repre-
sentative alternatives to compare against our definitions. For similarity, 
we consider feature centroid distance (FCD), which measures the dis-
tance between group feature means, and maximum mean discrepancy 
(MMD) (Yan et al., 2017), which captures higher-order distributional 
differences. For utility, we adopt the logit gap (LG) (Wani et al., 2024), a 
common measure of sample difficulty based on the margin between pre-
dicted class probabilities. These alternatives provide meaningful base-
lines to test the robustness of our design choices.

Table 5 presents the results of this study. When only utility or only 
similarity is used, performance drops across both datasets and groups, 
showing that neither component alone is sufficient. Replacing our sim-
ilarity with FCD or MMD also leads to weaker results, as these defi-
nitions fail to align group distributions as effectively as our approach. 
Likewise, substituting our utility with logit gap produces inferior perfor-
mance, indicating that our informativeness signal provides a stronger 
foundation. In contrast, the full method SPARE, which combines our 
definitions of both utility and similarity, consistently achieves the best 
balance of precision, recall, and F1 across groups. Together, these com-
parisons confirm that both components are indispensable and that the 
particular design choices in SPARE are critical to its effectiveness. The 
ablation results thus provide strong evidence for the necessity of the 
combined distance in enabling robust group-specific modeling.

5.2.6.  RQ6: resource-performance trade-off
Our framework trains separate models for different demographic 

groups to better capture group-specific representations. While experi-
mental results demonstrate that this strategy yields significant perfor-
mance improvements, training fully independent models for each group 
may be impractical in scenarios with a large number of groups or con-
strained computational resources. Notably, deep neural networks often 
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Fig. 5. Performance variation with different 𝛼 values for the (a) light and dark skin models on Fitzpatrick-17k dataset and (b) young and old models on ISIC 2019 
dataset.

Table 5 
Ablation study of the combined distance on Fitzpatrick-17k and ISIC 2019 datasets.

 Fitzpatrick-17k  ISIC 2019
 Skin Tone  Precision  Recall  F1  Age  Precision  Recall  F1

Utility Only  Light  0.479  0.483  0.466  Young  0.731  0.793  0.752
 Dark  0.520  0.522  0.495  Old  0.777  0.748  0.766

Similarity Only  Light  0.487  0.482  0.473  Young  0.730  0.798  0.765
 Dark  0.530  0.536  0.508  Old  0.781  0.776  0.780

Utility+FCD
 Light  0.481  0.485  0.468  Young  0.741  0.796  0.759
 Dark  0.518  0.528  0.496  Old  0.783  0.765  0.772

Utility+MMD
 Light  0.486  0.482  0.471  Young  0.745  0.798  0.762
 Dark  0.522  0.528  0.498  Old  0.780  0.783  0.776

Similarity+LG
 Light  0.501  0.492  0.477  Young  0.764  0.797  0.771
 Dark  0.525  0.531  0.507  Old  0.807  0.763  0.781

SPARE
 Light  0.508  0.499  0.488  Young  0.768  0.803  0.780
 Dark  0.534  0.542  0.517  Old  0.809  0.785  0.796

Table 6 
Performance comparison across different sharing layers on Fitzpatrick-17k and ISIC 2019 datasets.

 Fitzpatrick-17k  ISIC 2019
 Skin Tone  Precision  Recall  F1  Age  Precision  Recall  F1

Full Sharing  Light  0.467  0.468  0.449  Young  0.718  0.786  0.743
 Dark  0.512  0.511  0.490  Old  0.764  0.765  0.758

Main Sharing  Light  0.484  0.484  0.473  Young  0.738  0.788  0.756
 Dark  0.519  0.521  0.494  Old  0.779  0.773  0.774

Half Sharing  Light  0.497  0.487  0.479  Young  0.756  0.796  0.771
 Dark  0.534  0.542  0.517  Old  0.783  0.780  0.785

No Sharing  Light  0.508  0.499  0.488  Young  0.768  0.803  0.780
 Dark  0.534  0.542  0.517  Old  0.809  0.785  0.796

learn low-level, generic features (e.g., edges and textures) in the early 
layers. This observation raises a natural question: Is it necessary to train 
entirely separate models for each group, or can early layers be shared 
without substantially sacrificing performance?

To address this, we conducted additional experiments to explore the 
impact of sharing early network layers across groups. Using ResNet-18 
as the backbone, we evaluated four configurations on two datasets:

(1) Full sharing: a fully shared model with no group-specific compo-
nents;

(2) Main sharing: a model where only the final layer is group-specific;
(3) Half sharing: a partially specialized model in which approximately 

half of the layers are group-specific; and
(4) No sharing: fully group-specific models. The results, presented in 

Table 6, show that performance is lowest when all groups share 
the entire model. As more group-specific layers are introduced,

performance consistently improves, reaching its highest point with 
fully separated models.

These findings highlight a trade-off exists between performance and 
computational efficiency. While fully specialized models offer the best 
performance, they require proportionally more resources. In resource-
constrained environments, sharing early layers among groups provides 
a practical compromise, enabling competitive performance while signif-
icantly reducing the computational burden.

6.  Discussion and conclusion

Ensuring fairness in medical AI remains a complex and actively de-
bated challenge. Performance disparities across demographic groups 
are particularly concerning in clinical contexts, where diagnostic de-
cisions have direct and potentially serious implications for patient out-
comes. If left unresolved, these inequities may erode trust in AI-assisted 
diagnosis among both clinicians and patients. Existing fairness-aware
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algorithms have made progress in addressing these gaps. However, most 
of these works rely on a shared, group-agnostic model and seek to equal-
ize outcomes through implicit resource reallocation. This approach of-
ten improves performance for underrepresented groups at the expense 
of reducing accuracy for those already well-served. While this trade-off 
may be acceptable in low-risk domains, in healthcare-even small drops 
in accuracy can have serious clinical consequences. As a result, whether 
fairness should be achieved by compromising performance for any group 
remains an open and pressing question in high-stakes clinical applica-
tions.

In this work, rather than seeking fairness by trading off accuracy, we 
advocate for fairness through maximizing group-specific performance. 
While this approach may demand additional computational resources, 
we argue that such investment is justified in domains like healthcare, 
where precision and reliability are essential. To operationalize this 
idea, we propose SPARE-a sample reweighting algorithm that enhances 
group-specific model performance by selectively incorporating out-of-
group training samples. SPARE estimates the utility of each candidate 
sample and its distributional similarity to the target group, balancing 
performance gain with robustness to distribution shift. Empirical results 
across multiple medical datasets demonstrate that SPARE significantly 
improves performance for target groups while preserving fairness met-
rics comparable to state-of-the-art baselines. These findings suggest that 
SPARE may serve as a practical complement to existing fairness inter-
ventions, especially in clinical applications where model reliability must 
extend across diverse patient populations.

While we advocate for subgroup-specific performance maximization 
as a more appropriate paradigm for achieving fairness in medical AI, this 
work also opens up several avenues for further exploration. One consid-
eration lies in the complexity of demographic structures in real-world 
populations. In practice, demographic groups are rarely binary; instead, 
they consist of complex intersections-such as combinations of gender, 
race, and age-resulting in a potentially vast number of subgroups. Train-
ing a dedicated model for each subgroup is infeasible. A promising di-
rection may lie in group clustering-identifying a small number of rep-
resentative subgroups that capture the key variations across the pop-
ulation, and then applying group-specific optimization at this reduced 
granularity. Another opportunity for future research concerns scalabil-
ity. Recent advances in parameter-efficient fine-tuning (Liu et al., 2023, 
2024) suggest that full model retraining for each group may not be nec-
essary. Instead, lightweight modules could offer a scalable way to tailor 
models while filtering harmful out-of-group samples or adapting rep-
resentations selectively. These techniques may provide practical means 
to support subgroup performance without incurring prohibitive compu-
tational costs. Finally, it is worth noting that while our approach con-
sistently improves both subgroup performance and fairness metrics in 
experiments, SPARE does not explicitly optimize fairness criteria such 
as Equal Opportunity or Equalized Odds, and therefore cannot guarantee 
improvements under these definitions. Encouragingly, we observe that 
fairness metrics often improve as a byproduct, likely because under-
represented groups benefit disproportionately when subgroup-specific 
performance is maximized. Future work could investigate the theoreti-
cal connection between performance maximization and fairness-gap re-
duction, potentially providing formal support for when and why such 
improvements occur. 

We view SPARE as an initial step toward this more flexible approach 
to fairness-one that moves beyond uniformity and allows models to 
adapt to group-specific needs while maintaining clinical rigor. We hope 
this work encourages further research into practical fairness strategies 
that can more effectively support equitable outcomes across diverse pa-
tient populations.
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Appendix A. 

A.1.  Proof for Eq. (1)

Proof: We have:

𝑒0(𝑓𝑤) − 𝑒0(𝑓 ∗)

=(𝑒0(𝑓𝑤) − 𝑒𝑤(𝑓𝑤)) + (𝑒𝑤(𝑓𝑤) − 𝑒0(𝑓 ∗))

=
∑


Pr0

(𝑥 = 𝑥𝑖) ⋅ 𝑙(𝑓𝑤(𝑥𝑖), 𝑦𝑖) − Pr𝑤
(𝑥 = 𝑥𝑖) ⋅ 𝑙(𝑓𝑤(𝑥𝑖), 𝑦𝑖)

+ (𝑒𝑤(𝑓𝑤) − 𝑒0(𝑓 ∗))

≤
∑


𝑙(𝑓𝑤(𝑥𝑖), 𝑦𝑖) ⋅ |Pr𝑤

(𝑥 = 𝑥𝑖) − Pr0
(𝑥 = 𝑥𝑖)| + (𝑒𝑤(𝑓𝑤) − 𝑒0(𝑓 ∗))

=
∑


𝑙(𝑓𝑤(𝑥𝑖), 𝑦𝑖) ⋅ |Pr𝑤

(𝑥 = 𝑥𝑖) − Pr0
(𝑥 = 𝑥𝑖)| + (𝑒𝑤(𝑓𝑤) + 𝑒𝑤(𝑓 ∗

𝑤))

+ (𝑒𝑤(𝑓 ∗
𝑤) − 𝑒0(𝑓 ∗))

≤
∑


𝐺𝑖

⏟⏟⏟
utility

⋅|Pr𝑤
(𝑥𝑖) − Pr0

(𝑥𝑖)|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

similarity

+

√

log(4∕𝛿)
2|𝐷𝑤|

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
empirical data size

+𝑐

(A.1)

The first term, 𝐺𝑖, represents the empirical risk of sample 𝑥𝑖. 
|Pr𝑤

(𝑥 = 𝑥𝑖) − Pr0
(𝑥 = 𝑥𝑖)| quantifies the divergence between the ini-

tial distribution of group 0, 0, and the distribution of the mixture sam-
ples, 𝑤. The second term is bounded with probability at least (1 − 𝛿)
by Hoeffding’s inequality:

𝑒𝑤(𝑓𝑤) + 𝑒𝑤(𝑓 ∗
𝑤) ≤

√

log(4∕𝛿)
2|𝐷𝑤|

,

The last term is a constant 𝑐, as the optimal risk is the ground truth and 
independent of the sample selection. 
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