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ABSTRACT

Recent efforts in medical image computing have focused on improving fairness by balancing it with accuracy
within a single, unified model. However, this often creates a trade-off: gains for underrepresented groups can
come at the expense of reduced accuracy for groups that were previously well-served. In high-stakes clinical con-
texts, even minor drops in accuracy can lead to serious consequences, making such trade-offs highly contentious.
Rather than accepting this compromise, we reframe the fairness objective in this paper as maximizing diagnostic
accuracy for each patient group by leveraging additional computational resources to train group-specific models.
To achieve this goal, we introduce SPARE, a novel data reweighting algorithm designed to optimize performance
for a given group. SPARE evaluates the value of each training sample using two key factors: utility, which re-
flects the sample’s contribution to refining the model’s decision boundary, and group similarity, which captures
its relevance to the target group. By assigning greater weight to samples that score highly on both metrics, SPARE
rebalances the training process-particularly leveraging the value of out-of-group data-to improve group-specific
accuracy while avoiding the traditional fairness-accuracy trade-off. Experiments on two skin disease datasets
demonstrate that SPARE significantly improves group-specific performance while maintaining comparable fair-

ness metrics, highlighting its promise as a more practical fairness paradigm for improving clinical reliability.

1. Introduction

Machine learning-based medical diagnosis systems have become in-
creasingly prevalent. During the diagnosing process, these systems typ-
ically employ a “one-size-fits-all” approach, using models trained on
data from diverse populations to maximize overall accuracy. However,
due to substantial differences in disease prevalence and manifestations
across patient groups, such generalized models typically achieve sat-
isfactory performance only for well-represented populations, while un-
derperforming for others. For instance, in dermatology, individuals with
lighter skin have lower melanin levels (Caini et al., 2009), making them
more susceptible to melanoma. Consequently, they are overrepresented
in training datasets and are prioritized during the model’s learning pro-
cess, leading to better performance for lighter skin types compared to
dark skin types. This discriminatory behavior can have serious societal
consequences, including misdiagnoses or delayed treatments for cer-
tain groups, ultimately exacerbating existing healthcare disparities. To
mitigate such biases, traditional fairness-aware algorithms (Aayushman
et al., 2024; Chiu et al., 2024; Zhang et al., 2022; Zong et al., 2022;
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Mehrabi et al., 2021; Puyol-Antén et al., 2021) aim to reduce the ac-
curacy gap between groups. This conventional approach, however, of-
ten improves accuracy for underrepresented groups at the expense of
reducing performance for those originally well-served, embodying the
well-known fairness-accuracy trade-off (Rodolfa et al., 2021).

In clinical settings, where even minor losses in accuracy can lead
to severe consequences (Chen et al., 2018), sacrificing precision for the
sake of fairness is simply not an option. Unlike non-critical domains-
such as online search engines (Alfiana et al., 2023) or content recom-
mendation systems (Jesse and Jannach, 2021)-where slight degrada-
tions in performance may be acceptable, in healthcare they translate
to missed or incorrect diagnoses that endanger patient safety. More crit-
ically, these reductions often occur near the decision boundary-precisely
where clinical cases are most ambiguous and clinicians are most likely
to make errors (Yuan et al., 2021). In such high-uncertainty scenarios,
even a slight drop in accuracy can disproportionately increase the risk
of misdiagnosis, amplifying clinical harm. At the same time, it is cru-
cial to recognize that improving outcomes for underrepresented groups
does not inherently require sacrificing performance for well-served ones.
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Fairness algorithms are often framed as redistributing performance, but
in practice, drops in accuracy for well-served groups are neither neces-
sary nor causally tied to gains for others. In fact, once improvements are
achieved for disadvantaged groups, it is both feasible and desirable to
retain the original model for groups already performing well. Therefore,
we propose rethinking fairness in healthcare by shifting its definition:
rather than merely closing the gap between groups while keeping aver-
age accuracy, it should be achieved by enabling each group to reach its
maximum possible accuracy.

Central to our approach is a novel trade-off triangle involving fair-
ness, group-specific accuracy, and computing resources. While every
model inherently grapples with these three factors, previous methods
have largely confined their efforts to balancing group accuracy and fair-
ness within a single model, implicitly assuming fixed computational re-
sources and tolerable performance drops. In contrast, in this paper, we
explicitly leverage additional computing power to train group-specific
models, bypassing the traditional fairness-accuracy trade-off. This com-
putational investment aims to maximize diagnostic precision for each
group, a requirement indispensable for clinical reliability in high-stakes
applications. While many domains accept modest accuracy losses, in
healthcare the imperative to optimize performance across all groups jus-
tifies the investment in additional computational capacity.

This paper focuses on developing methods to maximize performance
for a target group and train dedicated models for each group. This
group-specific approach enables more precise modeling and leads to im-
proved performance across all subpopulations. While tailoring models
to individual patient groups holds great promise, a central challenge
remains: how to identify the most effective training data for each tar-
get group. The most straightforward approach is to train exclusively on
data from the target group, but this often leads to suboptimal perfor-
mance due to data scarcity, limiting the model’s ability to capture ro-
bust patterns. Conversely, leveraging the entire dataset may introduce
distributional shifts that obscure the unique characteristics of the target
group. This situation presents an inherent trade-off: while out-of-group
data can enhance generalizability, it may simultaneously compromise
the model’s ability to learn group-specific features. This trade-off is em-
pirically shown in Section 2, and theoretically shown in Section 4.2.
However, selectively incorporating a subset of out-of-group samples
remains challenging without a reliable metric to assess each sample’s
contribution. Therefore, a data-driven approach is crucial for effectively
integrating out-of-group data, optimizing model performance for each
target group, and ensuring the highest possible diagnostic precision
across diverse populations.

To address these challenges, we propose SPARE (Subgroup
Performance-Aware Reweighting mEthod)-a unified sample reweight-
ing framework that aims to maximize subgroup performance by intel-
ligently selecting and weighting out-of-group data. A core difficulty in
this task lies in balancing two conflicting needs: identifying samples that
contribute to improving the target group’s model while avoiding those
that introduce harmful distributional shifts. Instead of handling these
two objectives independently, SPARE provides an elegant, unified solu-
tion by framing both utility and distribution similarity through a shared
perspective: the distance between a sample and its relevant decision
boundaries. Specifically, samples closer to the boundary of the diagnos-
tic classifier are more informative for model refinement, while those
near the boundary of the group label predictor better align with the tar-
get group’s distribution. By integrating these dimensions into a unified
scoring function, SPARE prioritizes samples that are both valuable and
distributionally compatible, selectively incorporating beneficial out-of-
group data while mitigating the risks of distributional shift. This scoring-
based approach enables principled integration of out-of-group data to
optimize subgroup performance for group-specific fmodels.

To validate the effectiveness of our approach, we focus on one of
the most extensively studied tasks in medical fairness: skin disease di-
agnosis (Ansari et al., 2024; Chiu et al., 2023). Experiments were con-
ducted on two widely used dermatology datasets, where SPARE was
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evaluated against the current state-of-the-art fairness methods. These
baseline methods fall into two primary categories: those aiming to
minimize performance disparities between groups, and those employ-
ing group-specific models or modules. Experimental results show that,
rather than compromising overall model performance to reduce dispar-
ities, SPARE substantially improves performance for both groups. For
instance, on the Fitzpatrick-17k dataset, SPARE achieves a 3.7% im-
provement for dark skin types and a 4.0% improvement for light skin
types over state-of-the-art methods. Furthermore, although SPARE does
not explicitly optimize for gap reduction, it nevertheless reduces per-
formance disparities across groups. On classical fairness metrics used
to measure such disparities, SPARE exceeds or performs comparably
to the best existing methods. This outcome indicates that the process
of training group-specific models under SPARE confers greater perfor-
mance gains to underrepresented groups. A plausible explanation is that
conventional training tends to allocate model capacity disproportion-
ately toward privileged groups, whereas SPARE rebalances this alloca-
tion during group-specific training. Overall, these results demonstrate
that, relative to conventional fairness algorithms, SPARE provides a
more practical and effective solution for improving fairness in clini-
cal applications. By enhancing performance across all groups without
compromising diagnostic accuracy, SPARE contributes to a promising
direction for advancing equitable medical Al systems.
The main contributions of this paper are as follows:

e We present a practice-oriented view that frames fairness as maxi-
mizing performance within each subgroup. Guided by this view, we
investigate the subgroup-specific data selection problem, where us-
ing out-of-group data can improve generalizability but may dilute
group-specific features.

e We develop SPARE, a sample-wise reweighting method that quanti-
fies each sample’s value through two factors-utility and similarity-to
balance generalizability and group-specific representational fidelity
during the training process.

o Extensive experimental results demonstrate that our approach sub-
stantially improves performance across all subgroups, while match-
ing or exceeding state-of-the-art methods on fairness metrics across
multiple skin disease diagnosis datasets.

2. Empirical analysis of group-specific training

In this section, we empirically demonstrate the importance of se-
lecting appropriate training data to achieve optimal performance for
specific demographic groups. We adopt the Fitzpatrick-17k dataset for
a skin disease classification task (Groh et al., 2021), where skin types
T1-T3 are grouped as light skin and T4-T6 as dark skin. The dataset con-
tains 16,577 images representing 114 different skin conditions, and is
split into train/validation/test sets with a ratio of 6:2:2. We use the same
preprocessing and training settings as in Section 5, where full experi-
mental details are provided. In our experiments, we divide the dataset
into several subsets based on Fitzpatrick skin types and evaluate the
performance of different combinations of training subsets on both light
and dark skin test groups. The results are presented in Fig. 1, where
the x-axis denotes the specific combinations of training subsets, and the
y-axis shows the testing accuracy for the light skin group (lighter line)
and the dark skin group (darker line). From this figure, we observe the
following key findings:

For the light-skin subgroup, performance does not peak when trained
on the full dataset. Instead, using only skin types T1-T4 yields the best
results, achieving a 2.1% improvement over training on the full dataset,
as confirmed by McNemar’s test on paired predictions (p < .05). This
result underscores the benefits of group-specific training, particularly
for lower-performing groups in a single-model setting. Second, adding
dark skin samples initially enhances light skin accuracy; however, as the
proportion of dark skin samples increases further, the performance on
light skin declines. While out-of-group data can enhance generalization,
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Fig. 1. Left: Distribution of data volume across skin types in the Fitzpatrick-17k dataset. Right: Model performance trained with different skin type subsets and
evaluated separately on light and dark skin. Adding dark skin samples initially enhances light skin accuracy; however, as the proportion of dark skin samples

increases further, the performance on light skin declines.

it can also introduce distributional shifts that negatively impact perfor-
mance. This highlights the importance of quantifying both the benefits
and potential risks of incorporating out-of-group data to optimize group-
specific performance. Third, for the originally well-performed dark-skin
type, training exclusively on dark-skin data yields lower accuracy than
training exclusively on light-skin data. A likely explanation is that the
light-skin subset is substantially larger in size, so the benefit of its greater
data volume outweighs the distribution shift it introduces, ultimately
providing a more reliable signal for the dark-skin model.

These empirical findings highlight the need for data-driven ap-
proaches that optimize performance for individual subgroups. In partic-
ular, the results suggest that tailoring models to specific demographic
groups can be especially beneficial for those that are originally under-
represented in the training data. This may be attributed to the limited
influence of underrepresented subgroups on the shared feature space
in generalized models, which often fail to capture their specific char-
acteristics. In contrast, subgroup-specific models can dedicate their full
representational capacity to the target group, resulting in improved per-
formance, particularly for minority populations (Afrose et al., 2022).

3. Related works
3.1. Fairness falgorithms in healthcare

Most fairness methods in healthcare focus on reducing disparities
across demographic groups by minimizing differences in performance
metrics such as true positive rates and false positive rates. This is com-
monly formalized through criteria like Equalized Opportunity and Equal-
ized Odds (Hardt et al., 2016), which aim to ensure similar outcomes
across sensitive attributes for patients with the same ground truth label.

Existing fairness approaches are commonly categorized into three
groups: pre-processing, in-processing, and post-processing methods. Pre-
processing techniques aim to achieve fairness by modifying the train-
ing data before model development. For example, Xu et al. (2018),
Ngxande et al. (2020), Lu et al. (2020) applies specific data transfor-
mations to remove discriminatory patterns, while Kamiran and Calders
(2012) assigns varying weights to individual samples to suppress the
influence of sensitive attributes. In-processing methods intervene dur-
ing model training to balance multiple objectives, typically aiming to
jointly optimize for accuracy and fairness. A widely adopted strategy
in this category is adversarial training, where an auxiliary adversary
network attempts to predict sensitive attributes from learned represen-
tations, while the main model is trained to minimize the adversary’s
success, thereby reducing the encoding of sensitive information (Alvi
et al., 2018; Zhang et al., 2018; Wang et al., 2022). Another line of
work focuses on regularization-based methods, which penalize correla-
tions between sensitive attributes and the model’s output to encourage
fairness (Jung et al., 2021; Quadrianto et al., 2019). For instance, Gret-
ton et al. (2012) learns fair representations by distilling the fair infor-
mation from a teacher model into a student model using the Maximum
Mean Discrepancy loss. More recently, techniques such as pruning and

quantization have been explored to reduce bias by removing model com-
ponents that disproportionately contribute to disparities across sensitive
groups (Chiu et al., 2023; Guo et al., 2024). Post-processing methods op-
erate after the model has been trained, adjusting its outputs to enhance
fairness. A typical approach involves threshold adjustment, where dif-
ferent prediction thresholds are applied to different sensitive groups to
satisfy fairness criteria (Hardt et al., 2016; Valera et al., 2018). In addi-
tion, Du et al. (2020) improves fairness by calibrating the model’s out-
put distribution to align with a specified fairness metric, using both the
model’s raw predictions and sensitive attribute information as inputs.

These fairness-aware methods inherently face limitations at the
Pareto frontier, where it becomes infeasible to simultaneously improve
the performance of all groups (Dehdashtian et al., 2024). Consequently,
such methods often leave at least one group in a suboptimal state. More
concerningly, fairness constraints can lead to performance degradation
across all groups in some cases, undermining the overall utility of the
model (Wu et al., 2022; Duan et al., 2025). A notable example lies in
the common practice of suppressing sensitive attributes to mitigate bias.
While this strategy may appear effective in improving fairness metrics,
it neglects the critical role these attributes play in clinical decision-
making. Attributes like skin type, race, and gender are not merely con-
founders but often inform diagnoses. For instance, skin type provides
crucial information for assessing UV susceptibility (Caini et al., 2009;
Narayanan et al., 2010), and disease prevalence varies by race and gen-
der (Narayanan et al., 2010; Gordon, 2013). In high-stakes clinical en-
vironments, compromising diagnostic accuracy for fairness can often be
impractical and potentially hazardous. Therefore, fairness and accuracy
should be treated not as trade-offs but as complementary goals to ensure
reliable and effective medical care.

3.2. Fairness through subgroup performance maximization

Beyond gap-reduction approaches, several studies have pursued fair-
ness by directly maximizing performance within each subgroup. In med-
ical imaging, Puyol-Antén et al. (2021) ftrained independent models for
each demographic group using only in-group data. More recently, Zhang
et al. (2022) introduced Stratified ERM for chest X-rays, which parti-
tions data by subgroup and learns distinct empirical risk minimizers,
while the MEDFAIR benchmark (Zong et al., 2022) formalized a simi-
lar perspective under the notion of domain independence across multiple
imaging modalities. These approaches share a common goal of enhanc-
ing subgroup-specific accuracy rather than minimizing disparities across
groups.

Similar ideas appear outside the medical imaging domain, where
fairness has been more broadly conceptualized in terms of subgroup-
specific performance. For instance, Wang et al. (2020) propose group-
specific classifiers with shared parameters that are optimized separately
for each subgroup, while Dwork et al. (2018) design a decoupled clas-
sification framework where distinct classifiers are trained for differ-
ent groups. In addition, Mehrabi et al. (2021) provide a comprehen-
sive review of fairness methods, explicitly highlighting strategies that
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emphasize improving subgroup-level performance. Collectively, these
works reinforce the perspective that fairness need not always be equated
with reducing inter-group disparities, but can instead be framed as en-
suring that each subgroup reaches its maximum achievable accuracy.

Beyond fairness-specific literature, adjacent paradigms also resonate
with this perspective. Multi-task learning (Evgeniou and Pontil, 2004;
Agiza et al., 2024) and personalized federated learning (Luo and Wu,
2022; Tan et al., 2022) both aim to balance knowledge transfer across
groups or domains with the need for subgroup-specific adaptation.
While these methods are not explicitly designed for fairness, their prin-
ciple of combining global generalization with local specialization aligns
closely with our objective of maximizing subgroup performance.

While prior approaches also aim to achieve fairness without com-
promising accuracy by improving subgroup-specific performance, they
typically regard each group as an isolated entity and train models using
only in-group data. In contrast, our method extends this line of work by
exploring the utility of out-of-group samples, showing that when incor-
porated strategically, such data can further enhance subgroup perfor-
mance. We validate this insight empirically and include representative
subgroup-specific methods as baselines for comparison. It is also worth
noting that, although optimizing subgroup performance does not inher-
ently guarantee improvements in traditional gap-based fairness metrics
discussed in Section 3.1, in practice we often observe such metrics im-
proving as a byproduct, likely because lower-performing groups tend
to achieve larger relative gains when subgroup-specific performance is
maximized.

3.3. Bridging fairness, domain shift and out-of-distribution generalization

A central cause of fairness issues in machine learning is the uneven
distribution of data across demographic groups. When certain groups
are underrepresented or exhibit unique feature-label relationships, mod-
els trained on aggregate data often generalize poorly to these groups.
This performance gap is closely related to challenges studied in out-of-
distribution (OOD) generalization and domain adaptation, where mod-
els fail under distribution shifts between training and deployment con-
ditions (Quinonero-Candela et al., 2022; Sun and Saenko, 2016).

In OOD generalization, the goal is to learn representations that re-
main robust across diverse domains, minimizing reliance on spurious
correlations often introduced by majority-group patterns (Sagawa et al.,
2019). To address this, researchers have proposed techniques such as
minimizing worst-case loss (Sagawa et al., 2019), pruning biased sam-
ples (Jain et al., 2024), and learning invariant representations (Ar-
jovsky et al., 2019). These strategies are conceptually aligned with fair-
ness methods that aim to reduce performance disparities by enforc-
ing group-invariant features. However, such approaches often discard
group-specific characteristics, limiting their ability to achieve optimal
performance within each individual distribution.

In contrast, domain adaptation focuses not on learning shared
features across all domains, but on improving performance for a
particular domain by transferring knowledge from related distribu-
tions (Ben-David et al.,, 2010). Adaptation methods include feature
alignment (Ganin et al., 2016), domain-invariant representation learn-
ing (Cortes et al, 2019), and weighted empirical risk minimiza-
tion (Zhang et al., 2012; Bu et al., 2022). These methods are more
aligned with our goal of group-specific optimization, where the objec-
tive is to maximize performance for a specific subgroup. However, our
approach departs from traditional domain adaptation in two key ways.
First, instead of treating each group as a monolithic domain, we eval-
uate cross-group samples at a finer, sample-wise granularity to assess
their utility for improving target group performance. Second, we in-
troduce a principled mechanism that jointly considers both utility and
distributional similarity when selecting which out-of-group samples to
incorporate. This allows us to move beyond rigid domain boundaries
and adaptively leverage the most beneficial examples, regardless of
origin.
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Recent studies have begun exploring fairness generalization across
domains and distributions, aiming to preserve fairness established in a
source environment when deploying a model under distribution shifts
in a new target environment. For example, Pham et al. (2023) seek to
maintain both fairness and accuracy in domain generalization settings,
while Liang et al. (2023) and Stan and Rostami (2024) investigate do-
main adaptation techniques to safeguard fairness in the face of distribu-
tional change. While such work on fairness robustness is valuable, our
study focuses on a more fundamental challenge at the source. Rather
than seeking to preserve fairness only after an external domain shift,
we use the theoretical tools of domain adaptation to address the ini-
tial fairness disparities arising from subgroup differences. In our view,
a “domain” need not be limited to environmental changes encountered
after deployment; instead, each demographic group can be framed as
its own domain. This reframing allows fairness to be pursued through
a domain-aware perspective. To the best of our knowledge, we present
the first systematic formulation of this objective, introducing a frame-
work that links fairness considerations with data-driven strategies for
optimizing performance across subgroups.

4. Methodology
4.1. Problem formulation

Consider a dataset D = {(x;, (;, Ci))}iji » where x; € X represents an
input sample, and each sample is associated with a pair of labels (y;, ¢;).
Here, y; € ¥ = {1,2, ..., k} denotes the class label, while ¢; € C = {0,1}
represents a binary group label (e.g., gender, race). In this paper we fo-
cus on binary group labels for clarity, though our approach extends eas-
ily to multiple groups with minor modifications. We partition the dataset
into two subsets, D, and D,, corresponding to groups 0 and 1, respec-
tively. Our approach builds upon a basic ensemble model that dynami-
cally selects the group-specific classifier based on the input. This ensem-
ble consists of two group-specific models, f, : X > Y and f| : X - Y,
trained exclusively on D, and D,, respectively. Additionally, a group
label predictor f, : X — C determines which group-specific model to
apply for a given input.

Our goal is to optimize the group-specific models f, and f;, such
that f, maximizes accuracy on D, and f| maximizes accuracy on D,. To
achieve this, we incorporate out-of-group data to improve each model.
Without loss of generality, the following method description focuses on
maximizing the performance of Group 0. That is, we treat GroupO/s
dataset (D) as the primary set and Groupl/s dataset (D) as the auxil-
iary set, selecting relevant samples from D, to enhance f,,. The process
is symmetric when optimizing f,. In the following sections, we denote
fo as f, to emphasize its role as the classifier for Group 0. A direct ap-
proach to improving ff, is to identify samples from D, that improve
its performance on D, when incorporated. However, this selection pro-
cess is NP-hard and inherently imposes a binary classification of sample
importance. To address this problem, instead of selecting samples, this
paper assigns each sample a weight that reflects its importance and can
be anywhere between 0 and 1, i.e., w € [0, 1].

4.2. The value of additional data: Utility vs. similarity

To improve the group-specific model f, trained on Group O data
D,, we examine how incorporating additional samples from the auxil-
iary group D, impacts a model trained for Group 0. Intuitively, more
training data can reduce generalization error by decreasing variance
from data fluctuations, generally improving performance (Hastie et al.,
2009; Duda et al., 1973). However, the benefit of using samples from
D, depends critically on its alignment with the distribution of D,,. While
additional data can stabilize learning, incorporating samples from a mis-
matched distribution can introduce bias and degrade performance.

To guide the design of our sample weighting method, we formalize
this trade-off and derive an upper bound on the generalization error



G. Xuetal
Feature Space / [ ]GroupO
1
Group 0 /Group 0 O Group 1
Label N ! Label P Negative N
. Positive P

Group Label

Group,0
Diagnosis ‘Classifier f

Fig. 2. The illustration of the distances from a sample to the decision boundaries
of the diagnosis classifier and the group predictor. These distances can serve as
proxies for utility and similarity, respectively.

of a model f,, trained on a weighted dataset D,,, where each sample
x; € Dy U D, is assigned a weight w; € [0, 1]. Let Pry, (x;) o w; represent
the empirical distribution induced by these weights. The bound on the
excess error when evaluating on Group 0 is given by:

. [log(4/6)
)= ) < G; -|Prp (x;)—P i S 1 >
KCBRLUREDY [Pro, o =Proyee+ (G5 e

Utility ——

Similarit
v Empirical Sample Size

(€Y

where f(;‘ is the ideal optimal model for Group 0, G; = £(f,,(x;), ¥;)
is the empirical loss incurred on sample x;, ‘Per (x;) = Prp, (x;)| cap-
tures the degree of distributional mismatch between the sample-wise
weighted distribution D, and the Group 0 distribution Dy, |D,,| is the
effective sample size of the weighted dataset, and ¢ is a constant. The
detailed proof of Eq. (1) is in the Appendix A.1.

This bound exposes three competing factors that determine the ben-
efit of the auxiliary data from D,: (i) utility G; of each sample for train-
ing the model, (ii) similarity between the sample’s distribution under D,,
and that of D,,, and (iii) the effective dataset size induced by the weight-
ing. Accordingly, our goal is to learn sample weights that jointly opti-
mize these dimensions-prioritizing samples that are both informative
and distributionally aligned, while naturally benefiting from increased
data volume to enhance the model performance on D,,.

Guided by this theoretical insight, we develop a weighting mech-
anism that quantifies both utility and similarity, as described in the
following section. We do not explicitly regularize for sample size, as
our weighting function inherently balances informativeness and distri-
butional alignment in a continuous manner. As a result, the effective
size of the training set arises implicitly from the learned weight distri-
bution. Introducing an additional constraint on sample count would be
redundant and unlikely to offer further benefit over the selection pro-
cess.

4.3. Quantifying utility and similarity

4.3.1. Distance to decision boundaries as a proxy

To effectively incorporate out-of-group data, it is essential to quan-
tify both a sample’s utility in improving classification and its similarity
to Group 0. These two factors are illustrated in Fig. 2, where the fea-
ture space contains samples from both Group 0 and Group 1, each la-
beled as positive (P) or negative (N). The decision boundary of Group 0’s
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diagnosis classifier f, (dashed line) separates positive and negative
cases, while the group label predictor f, (solid line) distinguishes be-
tween Group 0 and Group 1 samples. A sample x’s utility is determined
by its distance to the decision boundary of f,-the closer it is, the more
likely it is to be misclassified, making it more valuable for refining
Group0/s model. Similarly, the similarity is measured by f,’s classifi-
cation. If f, predicts x belongs to Group 0, it introduces no distribution
shift. If it is instead classified as Group 1, its similarity increases as it
gets closer to Group 0, indicating a smaller distribution gap.

Motivated by this observation, we define two key distances for a sam-
ple x: fd, the distance to the decision boundary of f,, which quantifies
utility as samples near the boundary provide greater value for model
refinement, and d7, the distance to the decision boundary of f,, which
represents distribution similarity—a smaller 4 indicates greater simi-
larity to Group 0. If f, classifies x as part of Group 0, we assume no
distribution shift and set d; = 0.

To balance these two distances, we define the combined distance as:

d(x) = ad; +(1 —a)d;. 2)

Here, a controls the trade-off between utility and similarity. A smaller
d(x) indicates a higher weight to x, ensuring the framework prioritizes
samples that are both informative and distributionally relevant.

4.3.2. Computing decision boundary distance via minimal perturbation

While the simplified illustration in Fig. 2 suggests that a perpendic-
ular distance could be computed analytically, in practice this is diffi-
cult to obtain directly. In high-dimensional, non-linear classifiers such
as deep neural networks, the decision boundary forms a highly com-
plex, non-convex surface for which no closed-form representation ex-
ists (Goodfellow et al., 2014). To estimate how close a sample x is to
a model’s decision boundary, we draw inspiration from adversarial at-
tack techniques (Carlini and Wagner, 2017), which are designed to find
small perturbations that change a model’s prediction. These techniques
offer a principled way to quantify the local robustness of a model’s pre-
diction for a given input. We adopt this approach for two reasons. First,
directly measuring the minimal perturbation required to flip a classifica-
tion provides a concrete, model-sensitive estimate of how close x lies to
the decision boundary. Compared to proxy measures such as confidence
scores or margin values, this perturbation-based metric more accurately
reflects the local geometry of the classifier’s decision surface. Second, be-
cause our method ultimately involves weighting images based on their
relevance and informativeness, it is crucial to ground these metrics in
the model’s actual behavior under input variations, rather than heuristic
approximations.

As illustrated in Fig. 3, for a given input x, we compute its distance
to a decision boundary by determining the smallest perturbation § such
that the model’s prediction changes. Formally, this is defined as:

m(sin D(x,x+6) s.t. C(x+6)#C(x), 3

where D(-) is a distance function-specifically the L, norm-and C(-) is
the model’s hard classification function (either f, for utility or f, for
similarity). A smaller perturbation norm ||§||, indicates that the sample
x is closer to the decision boundary, and thus either more informative
for refining decision boundaries (in the case of f.) or more similar to
the target D,’s distribution (in the case of f o)

However, solving this problem directly is challenging due to the non-
linearity and discontinuity of the classification constraint. To make it
tractable, we adopt a relaxed formulation based on soft labels. Specifi-
cally, we maximize the cross-entropy loss between the predicted softmax
outputs before and after perturbation, encouraging a change in predic-
tion without relying on a hard decision threshold. The relaxed optimiza-
tion becomes:

min [|5]|; - ¢ - L(C(x), C(x + 6)), 4

where €(-) denotes the softmax output of the model and £ is the cross-
entropy loss between original and perturbed outputs. The constant ¢
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Fig. 3. The distance between a sample and a model’s decision boundary is estimated using adversarial perturbations. For the group predictor, the minimal perturbation
required to alter the prediction to group 0 is computed. For the diagnosis classifier, the predicted class y is first identified, and the smallest perturbation needed to

change the output to any y’ # y is then computed.

Algorithm 1 Training algorithm for SPARE.

Input Full dataset D = D, U D,; diagnosis model f,; group model f,

Output Optimized group-specific model f*
1: Phase 1: Compute sample weights
2: for each sample x € D do
3 Compute d using f, and d;‘ using f, (Section 4.3)
4 Compute d(x) =a-d} +(1 —a)- d;‘
5: Set w, = ™4™
6: end for

7: Phase 2: Train group-specific model

8: Train f; on D using fixed weights {w, }

9: return f

controls the balance between minimizing perturbation size and maxi-
mizing prediction change. We solve this optimization using an iterative
gradient-based approach that refines §, progressively minimizing the
objective until a classification flip is achieved.

4.3.3. Final weighting function

The resulting perturbation norm ||§||, serves as the distance metric
for d and d7. These distances are then combined (by Eq. (2)) to deter-
mine the weight assigned to x, ensuring that SPARE prioritizes samples
that are both close to decision boundaries and distributionally aligned
with Dj,. Since the distribution of the calculated d(x) is highly skewed,
we ultimately use w, = e~ to map d(x) inversely to a range between
0 and 1 to obtain the final weight of an image x. Algorithm 1 shows the
training procedure for obtaining the group-specific model for Group 0.

5. Experiments and results

To evaluate the effectiveness of the proposed method, we conduct
comprehensive experiments designed to answer the following research
questions (RQs):

¢ RQ1: General performance comparison. How does the proposed
method perform compared to state-of-the-art bias mitigation ap-
proaches across different backbone architectures?

¢ RQ2: Weight distribution analysis. How do the weight distri-
butions differ across demographic groups in group-specific models
trained using our method?

e RQ3: Impact of weighting strategies. Our method assigns individ-
ual sample weights, subsequently normalized to the range [0, 1] via
an exponential mapping. To what extent do alternative weighting
strategies influence model performance?

e RQ4: Utility vs. similarity comparison. How does the hyperparam-
eter a, which balances utility and similarity in the weighting func-
tion, affect overall performance?

¢ RQ5: Ablation study of the combined distance. How do the utility
and similarity components, individually and in alternative formula-
tions, contribute to the overall effectiveness of the proposed com-
bined distance?

e RQ6: Resource-performance trade-off. In scenarios with limited
computational resources, where training separate models per group
is infeasible, how does the use of partially shared models impact
performance?

5.1. Datasets, training protocol and metrics

Dataset and Training Details. The proposed methods are evalu-
ated on two skin disease classification datasets: the Fitzpatrick-17k
dataset (Groh et al., 2021) and the ISIC 2019 challenge dataset (Com-
balia et al., 2019; Tschandl et al., 2018). The Fitzpatrick-17k dataset
comprises 16,577 images representing 114 different skin conditions. We
group skin types 1-3 as light skin and 4-6 as dark skin, following the
same settings as in Section 2. ISIC 2019 dataset contains f25,331 im-
ages across 8 categories. While gender is frequently selected as the sen-
sitive attribute in fairness-aware learning, we instead choose age due to
its quasi-continuous nature, which facilitates finer subgroup partition-
ing and enables more nuanced downstream visualization. Accordingly,
we divided the dataset into young and old groups for analysis. A stan-
dard preprocessing step for both datasets involves resizing all the im-
ages to a uniform size of 128 x 128 pixels. Various techniques such as
random horizontal flipping, vertical flipping, rotation, scaling, and au-
toaugment are used to augment the data, consistent with (Cubuk et al.,
2018). The dataset is split into train, validation, and test with a ratio
of 6:2:2. Unless otherwise specified, we use ResNet-18 (He et al., 2016)
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as the backbone. All models are trained for 200 epochs using the SGD
optimizer, with a fixed batch size of 128 to ensure consistency across
methods. For the learning rate, we performed a small validation-based
search over {1072,1073,107*} and selected 10~3, which yielded the best
performance; this setting was applied uniformly to both SPARE and all
baselines. For the proposed SPARE method, the trade-off parameter a
in Eq. (2) is analyzed in detail in Section 5.2.4, with « = 0.5 used as the
default unless otherwise specified. The adversarial perturbation balanc-
ing parameter c is set to 100 following (Carlini and Wagner, 2017). We
repeat this process three times and report the average to ensure consis-
tency of the results. Since SPARE is designed to train separate models
for each group, we report the performance of each group using its cor-
responding group-specific model in the results.

Metrics. Since the fairness objective of this paper is to improve diag-
nostic performance for every specific group, we adopt commonly used
classification metrics-precision, recall, and F1-score-as the main criteria
and report the group-wise result to assess model effectiveness. While
our proposed approach does not explicitly minimize inter-group dispar-
ities in the traditional fairness optimization sense, we report widely used
fairness metrics to enable comprehensive comparisons with prior state-
of-the-art methods. Specifically, we evaluate fairness using multi-class
versions of Equalized Opportunity (Eopp) and Equalized Odds (Eodd), fol-
lowing the definitions and implementations in Wu et al. (2022). To as-
sess the overall trade-off between fairness and predictive performance,
we also report the Fairness-Aware Trade-off Evaluation (FATE) metric in-
troduced by Xu et al. (2023), where higher FATE scores indicate a more
favorable balance between accuracy and fairness. Specifically, the FATE
metric is computed as:

ACC,, — ACC, FC, — FC,

5
ACC, FC, )

FATEpc =

Here, ACC denotes the model’s predictive performance, for which
we use the F1-score, and FC refers to the fairness criterion (e.g., Eopp or
Eodd). The subscripts m and b represent the bias-mitigated and baseline
models, respectively. The hyperparameter A controls the relative weight
of fairness in the overall evaluation; following (Xu et al., 2023), we set
4 =11in all experiments.

5.2. Result and discussions

5.2.1. RQI: Performance comparison with state-of-the-art

Baselines. We compare SPARE with various bias mitigation baselines.
Vanilla refers to models trained directly on ResNet-18 without any
fairness intervention. FairAdaBN adapts batch normalization layers to
sensitive attributes (Xu et al., 2023). For this method, we followed
the grid search range reported in the original paper ({0.1,1.0,2.0})
for its fairness-constraint parameter a« and selected a =1.0. SCP-
FairPrune (Kong et al., 2024) and FairQuantize (Guo et al., 2024) en-
hance fairness through pruning and quantization, respectively. Since
our dataset and backbone settings match those used in their papers,
we directly adopted the reported hyperparameters: for SCP-FairPrune,
prc = 2% and n = 3; for FairQuantize, we used a quantization ratio of
80% with # =0.778 on ISIC2019, and a ratio of 20% with g = 1.0 on
Fitzpatrick-17k. We also evaluate fairness methods based on group-
specific training. GroupModel (Puyol-Antén et al., 2021) trains a sep-
arate model per group using only its in-group data, while DomainIn-
dep (Wang et al., 2020) learns group-specific classifiers with shared
parameters. In addition, we include two methods originally developed
for broader group/domain adaptation but conceptually aligned with
subgroup performance maximization. Regularized Multi-Task Learning
(MTL) (Evgeniou and Pontil, 2004) encourages related groups to share
information through joint parameterization while still allowing group-
specific specialization, making it a natural baseline in our setting. AP-
PLE (Luo and Wu, 2022) learns group-specific Directed Relationship
(DR) weights that determine how much each subgroup borrows from
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others, which parallels our goal of leveraging out-of-group samples to
improve subgroup models.

Results on ISIC 2019 dataset. Table 1 reports the results on the ISIC
2019 dataset, demonstrating that SPARE consistently outperforms all
baselines in accuracy for both the young and old groups. For instance,
compared to the ResNet-18 backbone, SPARE achieves a 3.7% improve-
ment in F1-score for the young group and a 3.8% improvement for the
old group. Such gains are particularly valuable in high-stakes medical
applications, where it is crucial to avoid compromising the performance
of well-served groups or failing to capture the group-specific characteris-
tics of underrepresented populations. By training group-specific models,
SPARE addresses both concerns, enabling more equitable and effective
representation across demographic groups.

Meanwhile, SPARE also demonstrates strong performance on fair-
ness metrics. It ranks first in both Eopp0 and Eodd, and second in
Eoppl. Compared to the baseline, SPARE reduces EoppO by 16.7%,
Eoppl by 26.5%, and Eodd by 30.5%. This suggests that even with-
out explicitly incorporating bias mitigation constraints, SPARE effec-
tively narrows the disparity between demographic groups. In particular,
the group-specific approaches (GroupModel, DomainIndep, MTL, APPLE
and SPARE) yield larger performance gains for the underrepresented
younger subgroup compared to non-group-specific baselines FairAdaBN,
SCP-FairPrune, and FairQuantize. For example, group-specific models
improve the younger group’s Fl-score from 0.743 (vanilla ResNet-18)
to 0.780 (SPARE) and 0.752 (DomainIndep), whereas some non-group-
specific methods such as FairQuantize and DomainIndep fail to improve
the younger subgroup and even lower its performance. This may be
because global models trained to fit all groups tend to focus dispro-
portionately on overrepresented groups, thereby suppressing the learn-
ing of group-varying features associated with minority groups. In con-
trast, training group-specific models enables better representation of
each group’s unique features, with underrepresented groups benefiting
more substantially from this tailored optimization. Given its strong per-
formance on both accuracy and fairness metrics, SPARE achieves sub-
stantially higher FATE scores compared to other baseline models. For
instance, its FATE values computed using EoppO, Eopp1, and Eodd sur-
pass those of the second-best baselines by 36.5%, 11.7%, and 47.9%,
respectively.

Notably, although GroupModel, DomainIndep, MTL, APPLE and
SPARE all adopt group-specific training strategies and achieve relatively
higher accuracy compared to other bias mitigation methods, SPARE
stands out by attaining the best overall performance in both accu-
racy and fairness. These results suggest that achieving effective group-
specific training is non-trivial, underscoring the unique advantage of
SPARE’s weighting mechanism, which integrates both sample-level sim-
ilarity and utility to guide model learning.

Results on Fitzpatrick-17k dataset. Table 2 presents the results of
our method applied to the ResNet-18 backbone on the Fitzpatrick-17k
dataset. SPARE outperforms all baseline methods across all accuracy
metrics. In terms of fairness, it achieves the best performance on Eoppl
and ranks second on both Eopp0 and Eodd. Consistent with the results
observed on the ISIC 2019 dataset, these findings further support the
effectiveness of training group-specific models in both narrowing inter-
group performance disparities and maximizing per-group performance-
an approach that is particularly well-suited for high-stakes medical ap-
plications. Furthermore, SPARE demonstrates the highest FATE scores
by a considerable margin. Specifically, its FATE values based on Eopp0,
Eoppl, and Eodd exceed those of the second-best methods by 25.6%,
36.1%, and 63.6%, respectively.

Comparison with state-of-the-art in different backbone. To further
evaluate the generalizability of our approach, we replaced the backbone
model with VGG-11 (Simonyan and Zisserman, 2014) and replicated the
experiments described in Section 5.2.1. The results are presented in Ta-
ble 3, which report performance on the ISIC 2019 and Fitzpatrick-17k
datasets. Our method achieves the highest performance across all accu-
racy metrics on both datasets, while also maintaining competitive results
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;::iftslof accuracy and fairness on ISIC 2019 dataset using ResNet-18 backbone.
Accuracy Fairness
Method Age Precision Recall Fl-score EoppO | / FATE t Eoppl | / FATE t Eodd | / FATE 1
ResNet-18 é‘l):“g g:;éj g:;zg 8;;‘5‘: 0.018 / 0.000 0.102 / 0.000 0.558 / 0.000
GroupModel ;‘l’sng g:;g; 8:;?2 g:;gg 0.021 / -0.160 0.116 / -0.131 0.560 / 0.003
DomainIndep z‘l’gﬂg g:;ig 8:;22 g:;gg 0.016 / 0.117 0.075 / 0.271 0.492 /0.124
MTL \(;)(;mg g:;g g:;z: g:;gz 0.018 / -0.013 0.082 / 0.207 0.555 / 0.014
APPLE é‘l’;‘“g g:;‘;g 81;23 8:;‘6“9‘ 0.016 / 0.118 0.075 / 0.277 0.539 / 0.044
FairAdaBN ;‘I’E“g g:;;g 8;22 g:;gg 0.016 /0.104 0.073 / 0.278 0.458 / 0.173
SCP-FairPrune z‘l’gﬂg g:;gg g:;zg g:;gg 0.016 /0.114 0.089 /0.131 0.521 / 0.070
FairQuantize \gl);ng g:;g; g:;z; g:;gg 0.015 / 0.159 0.088 / 0.130 0.420 / 0.240
SPARE éi;mg g:;gg g:gg; g:;gg 0.015 / 0.217 0.075 / 0.315 0.388 / 0.355
Table 2
Results of accuracy and fairness on Fitzpatrick-17k dataset using ResNet-18 backbone.
Accuracy Fairness
Method Skin Tone Precision Recall Fl-score EoppO | / FATE t Eoppl | / FATE 1 Eodd | / FATE 1
ResNet-18 fiagrhkt g:iég g:iéé g::zg 0.0031 / 0.000 0.332 / 0.000 0.180 / 0.000
GroupModel E;kt g:i;; g:i;g g::gi 0.0030 / 0.045 0.320 / 0.048 0.164 / 0.107
DomainIndep Eag;kt g:ig; 8:255 g::gg 0.0030 / 0.041 0.320 / 0.045 0.163 / 0.103
MTL Eiagrhkt g:iég 8:522 g:igg 0.0030 / 0.051 0.302 / 0.110 0.164 /0.108
APPLE Eagrhkt g:ig; g:isls; g::z; 0.0030 / 0.047 0.312/0.075 0.171 / 0.064
FairAdaBN ?izrhkt g:jzg g:izg g:jgz 0.0030 / 0.007 0.302 / 0.065 0.171 /0.024
SCP-FairPrune Eagrli g:i;g 8:3;3 g::zg 0.0030 / 0.049 0.289 / 0.147 0.164 / 0.106
FairQuantize Eagi(t g:igg g:i;ﬁ g::jg 0.0028 / 0.082 0.291 / 0.109 0.156 / 0.118
SPARE Eiagrhkt g:gﬁg g:i;g g:ig 0.0030 / 0.103 0.289 / 0.200 0.158 / 0.193

in fairness metrics. Compared to the baseline VGG-11 model, SPARE
yields average improvements across two datasets of 21.1%, 36.4%, and
29.5% in EoppO0, Eoppl, and Eodd, respectively. Additionally, it attains
the highest FATE scores among all methods on both datasets. These find-
ings underscore the robustness of our approach across different neural
network architectures.

5.2.2. RQ2: Weight distribution analysis on group-specific models

Fig. 4a presents the weight distribution boxplots for data with dif-
ferent Fitzpatrick skin types from the Fitzpatrick-17k dataset, evalu-
ated using two group-specific models: the light-skin model (left) and
the dark-skin model (right). The results show that for in-group data,
most weights remain high, typically exceeding 0.8. In contrast, for

out-of-group data, weights tend to decrease as the distance from the
group increases in terms of Fitzpatrick skin type. Furthermore, we ob-
serve that the light-skin model assigns relatively lower weights to dark-
skin samples, whereas the dark-skin model tends to place slightly higher
weights on light-skin data. A Mann-Whitney U test confirmed that this
difference is statistically significant (p < .001), although the effect size
is small (Cliff’s 6§ ~ —0.04). These nuanced but consistent asymmetries
suggest that the light-skin model performance may be more dependent
on in-group data, potentially due to a greater distributional mismatch
between dark-skin samples and the light-skin subgroup. This interpre-
tation aligns with our empirical findings in Section 2: despite having
a larger training set, the light-skin group underperforms in the global
model. This may be due to dark-skin samples being farther from the
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;:ift: of accuracy and fairness on Fitzpatrick-17k dataset and ISIC 2019 dataset using VGG-11 backbone.
Accuracy Fairness

Method Group Precision Recall F1-score EoppO | / FATE 1 Eoppl | / FATE t Eodd | / FATE 1
Fitzpatrick 17k Dataset
VGG-11 LDiagrhkt g::gg g:fg g:gg 0.0032 / 0.000 0.282 / 0.000 0.142 / 0.000
GroupModel LDiag;kt g:fg 8:222 g::zg 0.0029 /0.101 0.273 / 0.040 0.136 / 0.049
DomainIndep Eagrhkt g:ﬁz g:igg g::z; 0.0030 / 0.068 0.276 / 0.028 0.143 / 0.003
MIL ]L)iag;kt 3:223 g::ig gzgg 0.0028 / 0.145 0.271 / 0.049 0.135 / 0.082
APPLE LDiagrhkt g::g; g:igi g::zg 0.0030 / 0.093 0.273 / 0.064 0.143 / 0.023
FairAdaBN LDiag;kt g::gz 8::;2 g::i; 0.0030 / 0.044 0.277 / 0.001 0.138 / 0.012
SCP-FairPrune Eagrhkt gjﬁf 8:222 g::g: 0.0029 / 0.115 0.277 / 0.038 0.133 / 0.089
FairQuantize LDiagrhkt g::g; g:g; g::g; 0.0028 / 0.086 0.268 / 0.013 0.129 / 0.052
SPARE LDiagrhkt g:z;i g:i;; g:::z 0.0028 /0.196  0.267 /0.125 0.130 / 0.160
ISIC 2019 Dataset
VGG-11 Z‘I’C‘l‘“g g:ggz g:;zg 8:322 0.023 / 0.000 0.150 / 0.000 0.078 / 0.000
GroupModel é‘l’c‘l‘“g g:%? g:;iz g:gzg 0.021 / 0.130 0.116 / 0.340 0.060 / 0.128
DomainIndep z‘l’gﬂg g:%; g:;sg g:ggz 0.021 / 0.090 0.103 / 0.316 0.051 / 0.345
MTL é‘l’gng g:ggs g:;?g g:gis 0.022 / 0.042 0.108 / 0.279 0.060 / 0.229
APPLE é‘;c‘lmg g:ggg g:;gg g:gzi 0.023 / 0.005 0.095 / 0.372 0.072 / 0.082
FairAdaBN 3‘1’(‘1‘“3 g:g;g g:;% g:gig 0.018 / 0.196 0.084 / 0.418 0.060 / 0.209
SCP-FairPrune 2‘1’(‘1‘“8 g:gig 8:;3‘2‘ 8232‘1‘ 0.020 / 0.125 0.098 / 0.341 0.068 / 0.123
FairQuantize é‘l’;“g g:gi; g:;;g g:%g 0.019 /0.163 0.088 / 0.403 0.060 / 0.220
SPARE é‘l’cllmg g:;;ﬁ g:;?i 3j§§3 0.018 / 0.369 0.090 / 0.565 0.052 / 0.398

group label predictor’s decision boundary, which allows them to domi-
nate the shared representation space and shift the model’s focus toward
dark-skin-specific features.

Similarly, Fig. 4b shows the weight distributions across age groups
in the ISIC 2019 dataset for two group-specific models: the young model
(left) and the old model (right). To enable clearer visualization, we di-
vided the age range into six categories: 1 (0-15), 2 (16-30), 3 (31-45), 4
(46-60), 5 (61-75), and 6 (76-90). Compared to the more structured
trends observed in Fitzpatrick-17k, the age-based results appear less
regular. For example, in the old model, age group 2 (16-30) receives
a weight similar to or slightly higher than group 3 (31-45). This may
be attributed to the fact that, unlike skin tone, age-related changes are
less visually distinct in skin images-particularly among individuals aged
16 to 45, where textural changes are subtle and difficult to detect vi-
sually. Overall, the observed trend-that each group-specific model as-
signs higher weights to in-group data and gradually decreases weights
as the group difference increases-reflects the intended effect of our de-
sign, where weights are derived from distances to the corresponding

group-specific decision boundary. In conjunction with the performance
gains reported fin Section 5.2.1, these results suggest that the proposed
group-specific weighting scheme effectively captures group distinctions
and contributes to improved fairness.

5.2.3. RQ3: Impact of weighting strategies

In this section, we examine alternative strategies for converting the
combined distance d(x) (defined in Section 4.3) into sample weights.
Specifically, given a set of samples each associated with a distance score
d(x), the question is how to map these scores into weights. We compare
our proposed continuous weighting in SPARE against several classical
alternatives, as shown in Table 4. GroupWeight assigns a fixed weight
to all samples within a group, without accounting for intra-group vari-
ation (Huang et al., 2016). Selection applies a binary threshold: sam-
ples with scores above the threshold receive a weight of 1, while oth-
ers are assigned a weight of 0. Ranking sorts samples by their score
and assigns weights based on their percentile rank (Roszkowska, 2013).
Experimental results show that the weighting strategy used in SPARE
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Table 4
Performance comparison across weighting strategies on Fitzpatrick-17k and ISIC 2019 datasets.
Fitzpatrick-17k ISIC 2019
Skin Tone Precision Recall F1 Age Precision Recall F1
GroupWeight Light 0.483 0.477  0.457  Young  0.742 0.797  0.762
Dark 0.514 0515  0.495 Old 0.785 0.768  0.772
Selection Light 0.498 0.485  0.476  Young  0.749 0.794  0.764
Dark 0.529 0.538 0512 Old 0.789 0771 0.775
Ranking Light 0.481 0.480  0.457 Young 0.731 0792 0.754
Dark 0.512 0513 0492 Old 0.779 0.756  0.764
SPARE Light 0.508 0.499  0.488 Young 0.768 0.803  0.780
Dark 0.534 0542 0517 Ol 0.809 0.785  0.796

1.04 old models perform best at « = 0.5, indicating the value of balancing

both factors.

081 Across both datasets, models trained using only similarity informa-
=06 tion (a = 0) consistently outperform those using only utility (« = 1). This
-g highlights the central importance of similarity in guiding sample selec-
= 0.4 tion for group-specific modeling, as it directly captures the distributional

02 Light Skin Dark Skin alignment between samples and their target group. Utility, meanwhile,

Model Model also contributes to model effectiveness, but serves more as a comple-

0.0 mentary signal modulating the relative influence of samples based on

1 2 3 42 5 6 1 2 3 4 5 6 their estimated informativeness. Together, the two dimensions provide
Fitzpatrick Skin Type Fitzpatrick Skin Type a flexible and principled basis for weighting data in group-specific model
(a) Fitzpatrick-17k dataset training.
1.0 1
5.2.5. RQ5: Ablation study of the combined distance

081 To further validate the design of the combined distance, we con-
=064 duct an ablation study that systematically examines the contribution of
-% its utility and similarity components. While the previous analysis varied
= 044 the trade-off parameter «, it remained unclear whether both components

0] Young Model Old Model are individually necessary and whether alternative formulations could

provide comparable benefits. Ablation is therefore crucial to verify that

0.01 our design is not only effective but also essential. We select three repre-

1 2 3 4 5 6 1 2 3 42 5 6 sentative alternatives to compare against our definitions. For similarity,

Age Category Age Category

(b) ISIC 2019 dataset

Fig. 4. Sample weight distribution for the (a) light and dark skin models on
Fitzpatrick-17k dataset and (b) young and old models on ISIC 2019 dataset.

outperforms all alternatives across both datasets. Selection ranks sec-
ond, suggesting that binary filtering can yield reasonably good perfor-
mance, though it lacks the granularity of continuous weighting. Both
GroupWeight and Ranking perform less effectively. This may be at-
tributed to GroupWeight’s inability to capture within-group heterogene-
ity, and to Ranking’s reliance on carefully tuned mappings between rank
percentiles and assigned weights. Overall, these findings further support
the effectiveness of SPARE’s weighting mechanism. Its simple yet power-
ful design enables sample-level weighting based on both similarity and
utility, providing a fine-grained way to capture the informativeness of
individual data points across multiple dimensions.

5.2.4. RQ4: Utility vs. similarity comparison through different « values
Fig. 5 illustrates the performance of two group-specific models on the
Fitzpatrick-17k and ISIC 2019 datasets under varying values of a, which
controls the trade-off between similarity and utility in the data weight-
ing function. Specifically, « = 0 indicates that only similarity is consid-
ered, while « = 1 means that only utility determines the weight. The
results show that, on the Fitzpatrick-17k dataset, the light-skin model
achieves optimal performance at a« = 0.4, while the dark-skin model
peaks at « = 0.6, suggesting that similarity plays a more dominant role
in the light-skin model. For the ISIC 2019 dataset, both the young and
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we consider feature centroid distance (FCD), which measures the dis-
tance between group feature means, and maximum mean discrepancy
(MMD) (Yan et al., 2017), which captures higher-order distributional
differences. For utility, we adopt the logit gap (LG) (Wani et al., 2024), a
common measure of sample difficulty based on the margin between pre-
dicted class probabilities. These alternatives provide meaningful base-
lines to test the robustness of our design choices.

Table 5 presents the results of this study. When only utility or only
similarity is used, performance drops across both datasets and groups,
showing that neither component alone is sufficient. Replacing our sim-
ilarity with FCD or MMD also leads to weaker results, as these defi-
nitions fail to align group distributions as effectively as our approach.
Likewise, substituting our utility with logit gap produces inferior perfor-
mance, indicating that our informativeness signal provides a stronger
foundation. In contrast, the full method SPARE, which combines our
definitions of both utility and similarity, consistently achieves the best
balance of precision, recall, and F1 across groups. Together, these com-
parisons confirm that both components are indispensable and that the
particular design choices in SPARE are critical to its effectiveness. The
ablation results thus provide strong evidence for the necessity of the
combined distance in enabling robust group-specific modeling.

5.2.6. RQ6: resource-performance trade-off

Our framework trains separate models for different demographic
groups to better capture group-specific representations. While experi-
mental results demonstrate that this strategy yields significant perfor-
mance improvements, training fully independent models for each group
may be impractical in scenarios with a large number of groups or con-
strained computational resources. Notably, deep neural networks often
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Fig. 5. Performance variation with different a values for the (a) light and dark skin models on Fitzpatrick-17k dataset and (b) young and old models on ISIC 2019
dataset.
Table 5
Ablation study of the combined distance on Fitzpatrick-17k and ISIC 2019 datasets.
Fitzpatrick-17k ISIC 2019
Skin Tone  Precision  Recall  F1 Age Precision  Recall  F1
Utility Onl Light 0.479 0.483 0.466 Young 0.731 0.793 0.752
y oy Dark 0.520 0522 0495 Old 0.777 0748 0.766
Similarity Onl Light 0.487 0.482 0.473 Young 0.730 0.798 0.765
Y Y Dark 0.530 0.536 0.508 old 0.781 0.776 0.780
- Light 0.481 0.485 0.468 Young 0.741 0.796 0.759
Utility +FCD Dark 0.518 0.528 0.496 old 0.783 0.765 0.772
- Light 0.486 0.482 0.471 Young 0.745 0.798 0.762
Utility +MMD— e 0.522 0528 0498 OId 0.780 0783 0.776
Similarity + LG Light 0.501 0.492 0.477 Young 0.764 0.797 0.771
Y Dark 0.525 0.531 0.507 old 0.807 0.763 0.781
SPARE Light 0.508 0.499 0.488 Young 0.768 0.803 0.780
Dark 0.534 0.542 0.517 old 0.809 0.785 0.796
Table 6
Performance comparison across different sharing layers on Fitzpatrick-17k and ISIC 2019 datasets.
Fitzpatrick-17k ISIC 2019
Skin Tone  Precision  Recall  F1 Age Precision  Recall  F1
Full Sharin. Light 0.467 0.468 0.449 Young 0.718 0.786 0.743
s Dark 0.512 0.511 0.490 old 0.764 0.765 0.758
Main Sharin Light 0.484 0.484 0.473 Young 0.738 0.788 0.756
J Dark 0.519 0.521 0.494 old 0.779 0.773 0.774
Half Sharin Light 0.497 0.487 0.479 Young 0.756 0.796 0.771
J Dark 0.534 0.542 0.517 old 0.783 0.780 0.785
No Sharin Light 0.508 0.499 0.488 Young 0.768 0.803 0.780
ring Dark 0.534 0.542 0.517 old 0.809 0.785 0.796

learn low-level, generic features (e.g., edges and textures) in the early
layers. This observation raises a natural question: Is it necessary to train
entirely separate models for each group, or can early layers be shared
without substantially sacrificing performance?

To address this, we conducted additional experiments to explore the
impact of sharing early network layers across groups. Using ResNet-18
as the backbone, we evaluated four configurations on two datasets:

(1) Full sharing: a fully shared model with no group-specific compo-
nents;

(2) Main sharing: a model where only the final layer is group-specific;

(3) Half sharing: a partially specialized model in which approximately
half of the layers are group-specific; and

(4) No sharing: fully group-specific models. The results, presented in
Table 6, show that performance is lowest when all groups share
the entire model. As more group-specific layers are introduced,
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performance consistently improves, reaching its highest point with
fully separated models.

These findings highlight a trade-off exists between performance and
computational efficiency. While fully specialized models offer the best
performance, they require proportionally more resources. In resource-
constrained environments, sharing early layers among groups provides
a practical compromise, enabling competitive performance while signif-
icantly reducing the computational burden.

6. Discussion and conclusion

Ensuring fairness in medical Al remains a complex and actively de-
bated challenge. Performance disparities across demographic groups
are particularly concerning in clinical contexts, where diagnostic de-
cisions have direct and potentially serious implications for patient out-
comes. If left unresolved, these inequities may erode trust in Al-assisted
diagnosis among both clinicians and patients. Existing fairness-aware
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algorithms have made progress in addressing these gaps. However, most
of these works rely on a shared, group-agnostic model and seek to equal-
ize outcomes through implicit resource reallocation. This approach of-
ten improves performance for underrepresented groups at the expense
of reducing accuracy for those already well-served. While this trade-off
may be acceptable in low-risk domains, in healthcare-even small drops
in accuracy can have serious clinical consequences. As a result, whether
fairness should be achieved by compromising performance for any group
remains an open and pressing question in high-stakes clinical applica-
tions.

In this work, rather than seeking fairness by trading off accuracy, we
advocate for fairness through maximizing group-specific performance.
While this approach may demand additional computational resources,
we argue that such investment is justified in domains like healthcare,
where precision and reliability are essential. To operationalize this
idea, we propose SPARE-a sample reweighting algorithm that enhances
group-specific model performance by selectively incorporating out-of-
group training samples. SPARE estimates the utility of each candidate
sample and its distributional similarity to the target group, balancing
performance gain with robustness to distribution shift. Empirical results
across multiple medical datasets demonstrate that SPARE significantly
improves performance for target groups while preserving fairness met-
rics comparable to state-of-the-art baselines. These findings suggest that
SPARE may serve as a practical complement to existing fairness inter-
ventions, especially in clinical applications where model reliability must
extend across diverse patient populations.

While we advocate for subgroup-specific performance maximization
as a more appropriate paradigm for achieving fairness in medical Al, this
work also opens up several avenues for further exploration. One consid-
eration lies in the complexity of demographic structures in real-world
populations. In practice, demographic groups are rarely binary; instead,
they consist of complex intersections-such as combinations of gender,
race, and age-resulting in a potentially vast number of subgroups. Train-
ing a dedicated model for each subgroup is infeasible. A promising di-
rection may lie in group clustering-identifying a small number of rep-
resentative subgroups that capture the key variations across the pop-
ulation, and then applying group-specific optimization at this reduced
granularity. Another opportunity for future research concerns scalabil-
ity. Recent advances in parameter-efficient fine-tuning (Liu et al., 2023,
2024) suggest that full model retraining for each group may not be nec-
essary. Instead, lightweight modules could offer a scalable way to tailor
models while filtering harmful out-of-group samples or adapting rep-
resentations selectively. These techniques may provide practical means
to support subgroup performance without incurring prohibitive compu-
tational costs. Finally, it is worth noting that while our approach con-
sistently improves both subgroup performance and fairness metrics in
experiments, SPARE does not explicitly optimize fairness criteria such
as Equal Opportunity or Equalized Odds, and therefore cannot guarantee
improvements under these definitions. Encouragingly, we observe that
fairness metrics often improve as a byproduct, likely because under-
represented groups benefit disproportionately when subgroup-specific
performance is maximized. Future work could investigate the theoreti-
cal connection between performance maximization and fairness-gap re-
duction, potentially providing formal support for when and why such
improvements occur.

We view SPARE as an initial step toward this more flexible approach
to fairness-one that moves beyond uniformity and allows models to
adapt to group-specific needs while maintaining clinical rigor. We hope
this work encourages further research into practical fairness strategies
that can more effectively support equitable outcomes across diverse pa-
tient populations.
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Appendix A.
A.1. Proof for Eq. (1)

Proof: We have:

eo(fi) —eo(f™)
=(e()(fw) - ew(fw)) + (ew(fw) - e()(f*))
= Y\ Prp, (e = X)) - 1(fu (), ) = Prp, (x = x,) - (£, (), 1)
X

+(ew(fu) = eo(f*)
<Y o), 9 - Prp, (x = x,) = Prp (x = x| + (e,,(f,,) = o(f ™)
X

= Y Ifu(xp). ) - [Prp, (x = x;) = Prpy (x = x)| + (€,(f) + € ()
X
log(4/3)
2ID,,|

——

empirical data size

+ (e, (f1,) — eg(f™)
<Y Gy [Prp, (x) = Prp (x)| +
X SN~ ——

utility similarity
(A.1)

The first term, G;, represents the empirical risk of sample x;.
[Prp, (x = x;) — Prp, (x = x;)| quantifies the divergence between the ini-
tial distribution of group 0, D, and the distribution of the mixture sam-
ples, D,,. The second term is bounded with probability at least (1 — &)
by Hoeffding’s inequality:

. [log(4/5)
e, (fu) +ey(fi) < lewl’

The last term is a constant c, as the optimal risk is the ground truth and
independent of the sample selection.
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