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a b s t r a c t

Nuclear cataract (NC) is the leading cause of vision impairment and blindness globally. NC patients
can slow the opacity development with early intervention or recover vision with cataract surgery.
Anterior segment optical coherence tomography (AS-OCT) images have been increasingly used for
clinical NC diagnosis. Compared with other ophthalmic images, e.g., slit lamp images, AS-OCT images
are vital for NC diagnosis due to their capability of clearly capturing the nucleus region. Moreover,
clinical research has shown the high correlation and repeatability between NC severity levels and
image features like mean, maximum, and standard deviation on AS-OCT images. This paper aims to
incorporate the clinical features into convolutional neural networks (CNNs) to improve NC classification
results and enhance the interpretation of the decision process. Thus, we propose a novel clinical-
awareness attention network (CCA-Net) to classify NC severity levels automatically. In CCA-Net, we
design a practical yet effective clinical-aware attention block, which not only uses the mixed pooling
operator to extract clinical features from each channel but also applies the designed clinical integration
operator to focus on salient channels. We conduct extensive experiments on one clinical AS-OCT image
dataset and two publicly available ophthalmology datasets. The results demonstrate that the CCA-Net
outperforms state-of-the-art attention-based CNNs and strong baselines. Moreover, we also provide
in-depth analysis to explain the internal behaviors of our method, enhancing the interpretation ability
of our method.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Cataract is the leading ocular disease for blindness and visual
mpairment in the world. According to the World report on vision
f World Health Organization (WHO) in 2019 [1], approximately
5.4 million patients suffer from moderate and severe vision
mpairment due to cataract. Moreover, the number of cataract pa-
ients would increase rapidly with the aging global population [2],
ince people over 60 have an 80% probability of cataract. Cataract
urgery and early intervention are commonly used methods to
mprove the vision and life quality of patients [3]. According
o the opacity location of cataract, it can be generally grouped
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isahigashita@gmail.com (R. Higashita), liuj@sustech.edu.cn (J. Liu).
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950-7051/© 2022 Elsevier B.V. All rights reserved.
into three types: nuclear cataract (NC), cortical cataract (CC), and
posterior subcapsular cataract (PSC) [4]. NC is the commonest
cataract type as well as an age-related ocular disease. Its clinical
symptoms include the gradual clouding and progressive harden-
ing of the nucleus region of the crystalline lens area. According
to real clinical diagnosis requirements and opacity development
of NC [5], it can be split into three stages based on Lens opacity
classification system III (LOCS III) [6,7]: (1) Stage 0: Normal, there
is no opacity on the nucleus region. (2) Stage 1: Mild NC (grade
= 1 or 2), the nuclear opacity is asymptomatic. (3) Stage 2:
Severe NC (grade ≥ 3), the nuclear opacity is symptomatic. For
patients with mild NC, clinical intervention can slow opacity
development. It is necessary and essential for patients with severe
NC to undergo cataract surgery and follow-up progress. Clinicians
usually diagnose NC severity levels based on their experience and
specialized knowledge based on slit-lamp images. However, such
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Fig. 1. Three severity levels of nuclear cataract (NC) based on AS-OCT images (a). Normal (b) without opacity; Mild NC (c) with slight opacity but is asymptomatic;
Severe NC (d) with opacity and is symptomatic.
a diagnosis mode could be error-prone and subjective. Since slit-
lamp images have limitations in capturing clear images of the
nucleus region, experienced clinicians who can adjust to such a
shortage are scarce.

Anterior segment optical coherence tomography imaging
AS-OCT) technique is non-invasive, user-friendly, quick, and
igh-resolution, as shown in Fig. 1(a). Compared with other
phthalmic images like slit lamp images, AS-OCT images can
learly capture the whole lens area, including nucleus-, cortex-
and capsule- regions. Clinical research [8–11] has studied the
orrelation between clinical features (like mean, maximum, and
tandard deviation) from the nucleus region and NC severity
evels on AS-OCT images. Such research found a high correlation
etween NC severity levels and clinical features [8,12] and also
erified the repeatability with interclass and intraclass analysis.
ig. 1(b)–(d) provide three representative examples of three NC
tages on AS-OCT images: normal (b), mild NC (c), and severe NC
d), which can help audiences understand the opacity information
f NC on AS-OCT images easily and quickly.
Channel attention mechanisms have been demonstrated to

rovide the potential to boost the performance of convolutional
eural networks (CNNs) in many learning tasks, e.g., computer
ision tasks. One of the most representative examples is Squeeze-
nd-Excitation (SE) attention method [13]. It extracts channel-
ise statistics information of feature maps from each channel
ith the global average pooling (GAP) operator. The extracted

nformation in the SE block can be considered the mean feature
rom the nucleus region for NC clinically. Furthermore, other
linical features such as maximum and standard deviation can be
iewed as different channel-wise information types, which can be
btained with other pooling operators.
Motivated by the link between channel-wise statistics infor-

ation and clinical features of the nucleus region on AS-OCT
mages. This paper aims to fully leverage the potential of clinical
rior knowledge to improve the NC classification by infusing
hem into attention-based CNN architecture design, which has
ot yet been studied by previous NC classification work. Thus, we
ropose a novel clinical-awareness attention network (CCA-Net)
o predict NC severity levels on AS-OCT images. In the CCA-Net,
his paper designs a practical yet effective clinical-awareness at-
ention (CCA) block by infusing the clinical features. The proposed
CA block comprises of two main operators: mixed pooling and
linical integration. The mixed pooling operator extracts three
linical features from each channel with global average pooling
GAP), global max pooling (GMP), and global standard deviation
ooling (GSP) methods, respectively. It is followed by the clinical
ntegration operator, which produces per-channel recalibrated
eights via channel-interaction operation and gating operator.
he recalibrated weights are used to emphasize important chan-

els and suppress less useful ones from each channel. A clinical

2

AS-OCT image dataset with 16,201 images is collected to ver-
ify the effectiveness of our CCA-Net. Additionally, we use two
publicly available ophthalmology image datasets to validate the
general performance of our method. The results on the clini-
cal AS-OCT image dataset and two public datasets show that
our method outperforms strong baselines and previous state-
of-the-art methods. Furthermore, we present the comprehensive
visualization analysis to explain the inherent behaviors of CCA-
Net with feature weight analysis and attention weight analysis,
interpreting the decision-making of CCA-Net. We also utilize the
class activation mapping (CAM) [14] to explain where and what
CCA-Net focuses on through comparisons to strong baselines.

The contributions of this paper are three-fold:

• This paper proposes an attention-based CNN architecture,
clinical-awareness attention network (CCA-Net) for auto-
matic NC classification on AS-OCT images. In the CCA-Net,
we design a practical yet effective clinical-awareness atten-
tion block, which not only extracts clinical features from
each channel through the mixed pooling operator but also
uses a clinical integration operator to highlight salient chan-
nels with produced attention weights.

• The experiment results on the clinical AS-OCT image dataset
and two public ophthalmology image datasets demonstrate
the superiority of our method through comparisons to strong
baselines and previous state-of-the-art methods.

• To our best knowledge, we are the first to conduct a series
of visualization analysis and ablation studies to analyze
the internal behaviors and validity of our method in-depth
by firstly using both feature weight analysis and attention
weight analysis, interpreting the decision-making of our
method for the NC diagnosis.

The rest of this paper is organized as follows: Section 2 gives
a brief survey of this paper, including AS-OCT image-based oc-
ular disease diagnosis and attention mechanisms. We introduce
our CCA-Net detailedly in Section 3, comprised of SE attention
block, CCA block and its variants, and implementation. In Sec-
tion 4, datasets and experiment settings are presented. In Sections
5, 6, 7, we discuss the classification results and analyze the
inherent behaviors of our method. Finally, we conclude the paper
in Section 8.

2. Related work

In this section, we give a brief survey of this paper, comprised
of AS-OCT image-based ocular disease diagnosis and attention
block design.
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.1. AS-OCT image-based ocular disease diagnosis

AS-OCT is a new OCT technique that can capture an eye’s
hole anterior chamber structure in a non-invasive, quick, and
igh-resolution way. Recently, ophthalmologists and researchers
ave gradually used AS-OCT images for anterior segment oph-
halmic disease diagnosis and scientific research purposes such
s cornea and glaucoma [15]. [16,17] uses deep CNN models to
egment the cornea structure automatically on AS-OCT images,
hich can be used to assist clinicians in diagnosing cornea dis-
ases precisely and quickly. Fu et al. [18–20] applied AS-OCT
mages to diagnose angle-closure glaucoma with deep learn-
ng models. In addition, researchers also have begun to diag-
ose cataract by using AS-OCT images [8–10]. Wong et al. [8]
tudied the correlation between opacity information of NC and
ean feature on AS-OCT images. The Spearman correlation co-
fficient results suggested a strong correlation between them.
ang et al. [12] also studied the correlation relationship between

he opacity and mean and maximum features. Other clinical
ork [9–11] also got similar correlation relationship results by
sing clinical features like maximum and standard deviation. Mo-
ivated by the clinical research, Zhang et al. [21] developed a CNN
odel named GraNet to classify NC severity levels on AS-OCT

mages automatically; unfortunately, they obtained poor results.
ollowing [21], [22] extracted image features from AS-OCT images
or automatic NC classification and achieved over 75% of accuracy.
oreover, previous work also indicates that there exists a great

mprovement for AS-OCT image-based NC classification results.

.2. Attention mechanisms

Attention mechanisms have been extensively studied and
idely plugged into modern CNN models for improving the per-

ormance on different learning tasks such as classification tasks
nd segmentation tasks. They can be generally classified into
hannel attention mechanism and spatial attention mechanism.
ypical examples including Squeeze-and-Excitation (SE) atten-
ion [13], self-attention [23], and criss-cross attention (CC) [24].

More related to this paper, SE attention method used both
queeze and excitation operators to model interdependencies
mong channels and generate attention weights for each channel
ccordingly. It first uses a GAP operator to compute channel-
tatistics information from each channel and then applies a
imple network to adjust the relative weights and generate more
nformative outputs. Convolutional block attention module
CBAM) [25] and Bottleneck Attention Module (BAM) [26] ex-
ended the idea of SE block by further introducing another spatial
ttention block. Efficient Channel Attention block (ECA) mod-
le [27] proposes an adaptive function to learn cross-channel
nteraction. Style-based recalibration module (SRM) [28] not only
ntroduces global average pooling operator but also utilizes prior
nowledge to extract other channel-wise features from feature
aps. In contrast to previous work include cataract classification
nd attention-based CNN architecture design, we incorporate
he prior clinical knowledge of NC for into attention block by
sing three pooling methods to obtain clinical features for the
irst time, and design a channel-interaction method to model
he interdependencies among channels and consider the relative
mportance of different clinical features. Furthermore, we use
he softmax operator instead of the sigmoid operator to set the
eights for each channel to highlight significant feature maps
ith the inter-comparison method.
3

Fig. 2. The schema of (a) Squeeze-and-Excitation (SE) method; (b) Residual SE
module: a SE block plugged into a residual block.

3. Methodology

We take the clinical-awareness attention (CCA) block as a com-
putational unit that target at strengthening the capability of
learned feature representations for CNNs. Given any interme-
diate feature tensor X = [x1, x2, . . . , xC ] ∈ RC×H×W as the
inputs and produces the augmented representation outputs Y =

[y1, y2, . . . , yC ], where C is the number of channels; H and W
denote the height and width of a feature map. To describe the
proposed CCA block clearly, this paper firstly revisits the SE
attention block.

3.1. Revisit squeeze-and-excitation attention

The standard convolution method cannot effectively model
the inter-dependencies among channels, which place the same
weights for each channel [13]. Since the standard convolution
method cannot capture global feature representation information,
global average pooling (GAP) can compensate for it.

SE attention block (as shown in Fig. 2) is comprised of two
operators structurally: squeeze and excitation. It utilizes GAP to
encode global representation information from each channel of
feature maps while using a learnable network for reconstructing
the inter-dependencies of channels dynamically. In the squeeze
operator, the channel-wise statistics information zc for cth chan-
nel is obtained by shrinking through spatial dimensions H × W :

zc = Fgap(Uc) = Fsq(Uc) =
1

H × W

H∑
i=1

W∑
j=1

xc(i, j). (1)

It is followed by the excitation operator, which uses a small
and learnable fully-connected (FC) network to construct the de-
pendencies of inter-channels and then applies a sigmoid operator
to emphasize the significant channels, which can be formulated
as follows:

X̂ = X · σ (ẑ) = X · σ (W2ReLU(W1z)), (2)

where σ and ReLU indicate the sigmoid function and ReLU func-
tion; W1 and W2 indicate the learnable weights in FC layers; ·

indicates the channel-wise multiplication.
SE attention block has been proven to be an important com-

ponent of CNNs due to its ability to enhance performance. How-
ever, it only considers global average channel-wise statistics
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Fig. 3. The schema of clinical-awareness attention (CCA) method (a); Residual
CCA module (b): a CCA block plugged into a residual block. Avg, Max, and Std
ndicate global average feature, global maximum feature, and global standard
eviation feature.

eature while ignoring other global channel-wise statistics fea-
ures, e.g., maximum. Moreover, it uses the sigmoid operator
o emphasize the important channels with the absolute weights
ut neglects the impacts of relative weights among channels. In
ontrast to the SE, we introduce a practical yet effective attention
lock, which takes into account both global feature representa-
ion information and the relative importance of channels.

.2. Clinical-awareness attention blocks

Our clinical-Awareness attention (CCA) block incorporates clin-
cal features into attention block design, consisting of two main
perators: mixed pooling and clinical integration. The diagram of
he CCA block can be seen in Fig. 3(a). Fig. 3(b) is the Residual
CA module, in which we combine a CCA block with a residual
lock.

.2.1. Mixed pooling
The process of extracting global channel-wise statistics fea-

ures from intermediate feature maps has been extensively stud-
ed in CNN and attention design [13,23] to improve the classi-
ication performance. In this paper, inspired by clinical research
f NC [8,12], we extract three global channel-wise statistics fea-
ures from each channel of feature maps through global average
ooling (GAP), global max pooling (GMP), and global standard
eviation pooling (GSP) operators accordingly: Avg, Max, and
td, which previous work has not been studied. Fig. 4 provides
hree examples for three pooling methods, aiming at helping au-
iences know the difference among these three pooling methods.
pecifically, given cth feature map xc , the mixed features can be

obtained with the following equations:

µc =
1

H × W

H∑
i=1

W∑
j=1

xc(i, j), (3)

δc =

√ 1
H × W

H∑
i=1

W∑
j=1

(xc(i, j) − µc)2, (4)

Maxc = max
(i,j)∈xc

xc(i, j), (5)

t = [µ , δ ,Max ], (6)
c c c c

4

Fig. 4. Toy example comparisons of global average pooling (GAP), global
maximum pooling (GMP), and global standard deviation pooling (GSP).

where µc , δ, and Maxc indicate the average value (Avg), standard
deviation value (Std), and max value (Max); tc ∈ R3 is the combi-
nation of three mixed pooling features, which concatenates with
the channel axis. In Section 6, we will verify the superiority over
the proposed mixed pooling compared to other pooling methods,
demonstrating the effectiveness of extracted global channel-wise
features.

The combination of GAP and GMP operators has been used in
CBAM [25] for extracting different global channel-wise statistics
features. However, they used a shared fully-connected network
to construct the interdependencies of channels by sharing the
same weights, which fails to highlight the difference between
channel-wise statistics features. To address this problem, this
paper proposes a clinical integration method.

3.2.2. Clinical integration
This paper converts clinical features into channel-wise weights

with a channel-interaction operator. The weights are purposed to
dynamically adjust the relative importance of mixed features and
highlight the individual channels simultaneously.

To achieve these, this paper designs a practical channel-inter-
ction fully connected layer (CIC) and adopts the softmax function
s the gating operator. Taking the generated representation T ∈

RN×C×3 from the mixed pooling operator as the input, the clinical
integration operator performs both the inter-channel dependency
relationship modeling and channel-wise encoding with learnable
weights W = [w1, w2,
..., wC ] =∈ RC×C×3:

vc = wc tnc, (7)

where V ∈ RN×C indicates the learned features, wc ∈ RC×3

are learnable weights for the mixed pooling features from each
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channel. This operator can be viewed as a channel-dependent
(cross-channel) fully-connected layer with three nodes as inputs
and a single node as the output.

It is followed by the softmax function as the gating oper-
ator, which is different from prior efforts [13,27,28]. It can be
formulated as follows:

gc = Softmax(vc) =
evc∑C
i=1 evi

, (8)

where gc ∈ RC×1×1 denotes the generated attention weights for
each channel. Compared with the sigmoid operator, the softmax
operator has the following advantages: Firstly, it constrains the
attention weights and has a sum of 1, facilitating the learn-
ing of attention-based CNN models. Secondly, attention weights
of other channels determine the particular channel-wise atten-
tion weight through softmax function, which can be taken as
a weak interaction among channels, which enables neurons to
highlight significant channels and suppress unimportant ones.
Finally, the original input X is recalibrated by multiplying the
ttention weights:

c = xc · gc, (9)

where yc is the augmented output. In Section 6.2, we will prove
the effectiveness of the softmax operator, comparing with other
gating functions such as sigmoid and tanh.

Discussion. To further exploit the effects of our CIC layer for both
weighing features and highlight/suppress individual channels. We
explore two variants of the CCA block, as shown in Fig. 5: (a) CCA-
Var1: we replace the CIC layer with group channel-interaction
fully connected layer (GCIC); (b) CCA-Var2: we replace the CIC
layer with channel-wise fully connected (CFC) layer. We also add
a batch normalization (BN) [29] layer after the CIC layer (CCA-
BN, as shown in Fig. 5(c)), and the effects is tested and discussed
based on performance in Section 6.1.

Fig. 6 shows three examples of CIC, GCIC, and CFC for ex-
plaining their differences visually. Fig. 6(a) is an example of
the CIC method, which can be viewed as a generalized linear
model (GLM). CIC not only adjusts the relative importance of
three feature representations but also considers the dependencies
among channels. Fig. 6(b) is an example of the GCIC method,
which can be taken as a local linear model (LLM). For the GCIC
method, we split the number of weight matrices into multiple
individual weight matrix groups and split feature representations
from the previous layer into individual feature representation
 w

5

groups. The number of matrix groups and feature representation
groups is equal, indicating we apply each weight matrix group to
the feature representation group. In this paper, we set the number
of groups to 8 in the GCIC. Although GCIC adjusts the relative
importance of three feature representations, it only constructs the
inter-dependencies among channels in each group. Fig. 6(c) is an
example of the CFC method and can be considered as an individ-
ual linear model. Each weight matrix in the CFC is applied to its
particular feature map to generate the learned feature. CFC only
considers the relative importance of three feature representations
without constructing the interdependencies among channels.

3.3. Implementation

This paper aims to fully leverage the potential of clinical
features to improve the NC classification performance of CNN
models by infusing advanced attention blocks with clinical prior
knowledge. Therefore, this paper takes classic CNN architectures:
ResNet18 and ResNet34 as examples to validate the advantages
of the proposed clinical-awareness attention block. Fig. 3(b) pro-
vides an example of the Residual-CCA module, in which we
plug a CCA block into a residual block. Because the residual
connection method is skill at alleviating the gradient vanishing
problem of deep network [30]. The CCA-Net is a stack of Residual-
CCA modules. Softmax function is used as the classifier, which
is a commonly used classifier in modern CNNs. We use the
cross-entropy loss function as the loss function:

LossCE = −
1
N

N∑
i=1

yi log ŷi, (10)

here yi, ŷi, and N denote the ground truth, predicted labels, and
he number of image instances.

. Dataset and experiment setup

.1. Dataset

This paper collected a clinical AS-OCT image dataset from a
ocal health physical center through the CASIA2 ophthalmology
evice (Tomey Corporation, Japan). Fig. 1(a) presents an example
f an AS-OCT image for the whole Anterior segment structure of
he eye. Only the nucleus region is related to NC (red bold); hence,
e use a deep segmentation network to acquire nucleus regions,
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Fig. 6. Three examples of the connected methods: channel-interaction fully connected (CIC) method (a), group channel-interaction fully connected (GCIC) method
(b), and channel-wise fully connected (CFC) method (c).
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Table 1
The data distribution of the severity levels of NC
on AS-OCT image dataset.

Normal Mild Severe

Training 896 3219 5504
Validation 317 793 2331
Testing 390 830 1921
Total 1603 4842 9756

as shown in Fig. 1(b)–(d). The labels of NC are mapped from slit-
lamp images due to the lack of a standard AS-OCT image-based
cataract classification system. Three experienced ophthalmolo-
gists labeled slit-lamp images, confirming the label quality. The
data collection of this paper is conducted according to the tenets
of Helsinki Declaration. Because of the retrospective nature and
fully anonymized usage of the dataset, we are exempted by the
medical ethics committee to inform the patients.

The AS-OCT image dataset contains 543 participants (422 right
yes and 440 left eyes), and the average age is 61.30 ± 18.65
range:14–95 years). 24 AS-OCT images are collected for each
ye; under the guidance of experienced ophthalmologists, 4,487
mages without complete lens regions are removed due to poorly
pened eyelids. Thus, the available number of AS-OCT images for
his paper is 16,201. We divide the AS-OCT image dataset into
hree disjoint subsets at the participant level: training, validation,
nd testing. This is because each participant usually has similar
C severity levels of both eyes. Table 1 shows the distribution of
hree NC severity levels on the AS-OCT image dataset. The size
f the original AS-OCT image is 864 × 386, and we resize it into
24 × 224 as the input for the proposed CCA-Net and comparable
NNs.
Furthermore, we use two publicly available ophthalmology

mage datasets to verify the general performance of our CCA-
et: the ACRIMA dataset and the UCSD dataset. It is a fundus
mage dataset for glaucoma, comprised of 396 glaucomatous and
09 normal instances. More detailed introduction of the ACRIMA
ataset can be found in [31]. We follow the same dataset split
ethod as previous work adopted in the experiments. The UCSD
ataset is an OCT image dataset comprised of the training and
esting datasets. The training dataset has 108,312 images: 37,206
ith choroidal neovascularization (CNV), 11,349 with diabetic
acular edema (DME), 8,617 with drusen, and 51,140 normal.
he testing dataset has 1000 images, and each category has the
ame number of images (250 images). The more detailed intro-
uction of the dataset can be seen in [32]. In the experiments,

e follow the dataset split method used in [33].

6

4.2. Metrics

Following cataract classification and glaucoma detection re-
search [34–36], this paper uses five evaluation metrics to assess
the classification performance of our method and baselines by fol-
lowing: Accuracy (ACC), precision (PR), specificity (SP), sensitivity
(Se), F1 score, and kappa coefficient value (Kappa). ACC indi-
cates the number of images that are correctly classified. F-score
is an essential indicator for evaluating the overall performance
of a method. Se is a significant evaluation measure for disease
diagnosis clinically. Kappa coefficient is a vital measure for as-
sessing diagnostic reliability clinically [34]. The above metrics are
formulated as follows:

ACC =
TP + TN

TP + TN + FP + FN
, (11)

e =
TP

TP + FN
, (12)

R =
TP

TP + FP
, (13)

SP =
TN

TN + FP
, (14)

1 =
2 ∗ PR ∗ Se
PR + Se

, (15)

where TP, TN, FP, and FN indicate true positive, true negative,
false positive, and false negative, respectively.

4.3. Baselines

This paper implements comprehensive experiments to demon-
strate the effectiveness of our method in the following.

• State-of-the-art attention methods. We use the following
channel attention methods for comparison: SE, CBAM [25],
(BAM) [26], (SRM) [28], and ECA. These channel attention
methods have achieved excellent performance on various
classification tasks and can be easily plugged into mod-
ern CNNs, like ResNet18 and ResNet34. They also provide
state-of-the-art baselines to verify the effectiveness of the
proposed CCA and its variants.

• Strong baselines. To further demonstrate the superiority
of our CCA-Nets, we use the following advanced CNNs and
machine learning methods for comparison: (1) state-of-the-
art CNN models: ResNet, GraNet, VGGNet, SGENet [37], and
EfficientNet [38]. (2) Advanced machine learning methods:

According to literature [22,39–41], we extract seventeen



X. Zhang, Z. Xiao, L. Hu et al. Knowledge-Based Systems 250 (2022) 109109

l
s
w
u

Fig. 7. Replacing the CIC with MLP and shared-MLP.

image features from the nucleus region on the AS-OCT im-
ages. Then we use machine learning methods to classify NC
severity levels based on extracted features, such as random
forest (RF), decision tree (DT), Gaussian Naive Bayes (NB),
support vector machine (SVM), multiclass logistic regression
(MLR), Adaboost, and GradientBoosting.

• Comparison of different pooling integration methods.
This paper tests the practical benefits of the proposed CIC
method and its variants through comparisons to other two
pooling integration methods: a multi-layer perceptron (MLP)
network of two fully connected layers (used in SE) and a
shared MLP network (employed in CBAM). Fig. 7 presents
examples of these two pooling integration methods based
on the proposed CCA block. The difference between the
MLP and the shared MLP is that: MLP sets different weights
for three features while the shared MLP sets the same
weights for them. Theoretically, the CIC is equivalent to
MLP since both our CIC and MLP use learnable weights to
set the relative importance of three feature representations
for constructing the channel dependencies. However, MLP
only uses a large kernel function to construct channel de-
pendencies globally while ignoring the roles of different
feature representations in each channel. This phenomenon
has been discussed in detail [42]. Our CIC uses multiple
kernel functions to model channels’ inter-dependencies in a
local–global manner. Our CIC uses multiple kernel functions
to model channels’ inter-dependencies in a local–global
manner. Thus, it considers that different feature represen-
tations from each feature map play varying roles in every
channel and interrelationship of channels, enabling CCA to
focus more on significant channels and suppress less useful
ones.
Comparison of different gating operators. We demon-
strate the superiority of softmax operator over other gating
operators like sigmoid and sparsemax in Section 6.

• Comparison of different pooling methods. We compared
our mixed pooling method with other six pooling method
to valid the effectiveness of it.

4.4. Experiment setup

All methods, including deep learning methods and machine
earning methods are implemented through Pytorch platform,
cikit-learn package, and OpenCV. Experiments are run on a
orkstation with an NVIDIA TITAN V (11 GB RAM) GPU. We
se the SGD optimizer with default settings (a momentum of
7

Fig. 8. Relationship between the performance of CCAs and the number of
parameters in them, compared with advanced attention methods (baseline
indicates ResNet18).

Table 2
Performance comparison and complexity comparison of state-of-the-art atten-
tion methods on the test dataset of AS-OCT images when taking ResNet18 and
ResNet34. The best results in this table are labeled in bold.
Method Backbone ACC F1 Kappa Params GFLOPs

ResNet18 [30]

ResNet18

91.02 90.98 83.43 11.18M 1.82
SE [13] 92.01 91.94 85.07 11.27M 1.82
CBAM [25] 93.63 93.15 88.26 11.27M 1.82
BAM [26] 92.10 92.59 85.32 11.20M 1.82
SRM [28] 91.56 91.30 84.75 11.18M 1.82
ECA [27] 92.26 94.95 85.62 11.18M 1.82
CCA 94.94 94.66 90.70 13.27M 1.82
CCA-Var1 94.84 94.91 90.20 11.44M 1.82
CCA-Var2 94.27 94.41 89.34 11.18M 1.82

ResNet [30]

ResNet34

88.57 88.57 78.27 21.29M 3.67
SE [13] 90.58 91.08 82.41 21.44M 3.67
CBAM [25] 92.61 92.63 86.08 21.45M 3.67
BAM [26] 93.35 93.33 87.29 21.31M 3.68
SRM [28] 91.75 91.48 84.23 21.29M 3.67
ECA [27] 91.25 91.58 83.62 21.29M 3.67
CCA 94.87 94.94 90.54 25.06M 3.68
CCA-Var1 94.68 94.67 90.22 21.76M 3.67
CCA-Var2 95.13 95.06 90.93 21.29M 3.67

0.9 and a weight decay of 1e-5) to optimize the network in the
training. We set the mini-batch size and training epochs to 16
and 150 for all deep learning methods in the training on the AS-
OCT image dataset, respectively. The initial learning rate is set to
0.025 and decreased by a factor of 10 every 20 epochs. We set
the fixed learning rate for 0.00025 when the training epochs are
over 70. We follow the standard practice for data augmentation
and perform the random flipping method (horizontal flipping and
vertical flipping) and the random cropping method for the train-
ing set. We use the practical mean channel subtraction strategy
to normalize the input images for training, validation, and testing.
The results reported are based on the best classification results on
the testing set.

5. Results and discussion

5.1. Comparison with state-of-the-art attention methods

We compare our CCA block and its two variants with other
five advanced attention methods and baselines (ResNet18 and
ResNet34), shown in Table 2. The results show that our CCAs
consistently improve the NC classification performance on three
evaluation measures. Specifically, the CCA outperforms SRM and
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Fig. 9. Weight values of three global channel-wise statistics features along with channel index in three stages with CIC method: Avg (green), Max (red), and Std
(blue).
Table 3
Significant analysis of CCA and its variants with
with t-test method: CCA-Var1 and CCA-Var2.
Comparison p-value

CCA vs. CCA-Var1 0.0001
CCA vs. CCA-Var2 0.009
CCA-Var1 vs. CCA-Var2 0.0002

ECA over absolute 3%, 2% in the accuracy, and obtains over 5% in the
kappa, respectively; moreover, it uses the same computation cost
as they did. We can also see that compared with SENet, CBAM,
and BAM, the CCA uses slightly more parameters and obtains
2% improvement in the kappa and over 1.3% in the accuracy
accordingly. Remarkably, two CCA variants also achieve over 94%
of accuracy, and CCA-Var2 gets the best accuracy with 95.13% on
the ResNet34 backbone, which demonstrate the effectiveness of
our CCAs by infusing clinical prior knowledge.

Fig. 8 plots the performance relationship between the number
of parameters for the CCAs and comparable attention methods
on ResNet18. We conclude that the proposed CCAs keep a better
balance between performance and model complexity through
comparisons to previous attention methods, especially CCA-Var1
and CCA-Var2. Furthermore, these attention methods generally
obtain better NC classification results with the ResNet18 than the
ResNet34. This is because the available AS-OCT images for train-
ing the network are limited. In the following experiments, we use
ResNet18 as the baseline to analyze the inherent behaviors of our
CCA.

Table 3 presents the statistical significance of the NC classifi-
cation results on the clinical AS-OCT image dataset for CCA-Net
and its two variants (CCA-Var1-Net and CCA-Var2-Net) by using
the Student’s t-test method [43]. We can find the significant
difference in the classification performance of CCA-Net and its
variants (p-value <0.05), which indicates that the learned feature
representations of these three deep networks are different.

5.2. Interpretation and visualization

5.2.1. Roles of different channel-wise statistics features
To investigate the roles of three different channel-wise statis-

tics features in the CCA block, we analyze the weights for them in
different level stages based on ResNet18: low (ConV_2_2), middle
(Conv_3_2) and (Conv_4_2), and high (Conv_5_2). Fig. 9 shows
weight distributions of these three features in the CCA block along
with the channel index, respectively. The horizontal and vertical
directions indicate the channel index and learned feature weights.
Green color, red color, and blue color indicate the learned weights
for three features: Avg, Max, and Std. We can see that averaged
weight distributions for three features change with the depth
8

of the network and the channel index. Two following reasons
can account for them: (1) Three features play different roles in
different stages, e.g., the Std has the higher weight value in the
low-level stage while the Max and Avg have higher weight values
in high-level stages; (2) different channels have varying effects
on attention values, and weight initializations are various due to
multiple kernel functions, leading to the difference of weights for
three features along with the channel index.

We also calculate the averaged weight values for three channel-
wise features in the proposed CIC method at all stages, as shown
in Fig. 10. We find one interesting pattern about the roles of
three features in the CCA block across the network depth: the
Std plays a more important role than the Max and Average in the
low-level stage, where Max and Avg have more significant effects
in the high-level stage. The fluctuations of weights for Max and
Avg are smaller than the weights for Std, which indicates that
Max and Avg are more significant than Std for improving the
NC classification performance. These results also agree with clin-
ical findings and demonstrate the effectiveness of the proposed
method. Figs. 11 and 12 further provide the averaged weight
values for the three features in the GCIC and CFC methods. It
can be seen that the weight distributions of three features in
these two methods are similar to the distributions in Fig. 9, also
proving the three features play different roles in the CCA block
for improving the classification results.

5.2.2. Attention weight visualization of different attention methods
Although the proposed CCA shares similar aspects of feature

recalibration with existing channel attention methods, like ECA
and SE. However, we observe that the inherent characteristics of
CCA are distinct from them based on attention weight analysis.
Fig. 13 visualizes the attention weights of our CCA and three
contrasted attention methods (SE, SRM, and ECA) for three NC
severity levels on testing images at different stages accordingly.
It can be seen that the difference of channels in the weight value
changes in descending order with the depth of the network. This
implies that more channels play essential roles in deep network
layers, but there are redundancies among channels, as shown
in Fig. 14. Interestingly, we find that the attention weight value
fluctuation of our CCA is smaller than the SRM and ECA except for
SE, indicating our CCA is easy to train. The fluctuation of atten-
tion weights in the SE is smooth, which places the approximate
weights for all channels and cannot discriminate the difference
between channels. The attention weight values of the CCA are
smaller than the other three attention methods because we use
the softmax function as the gating operator. All in all, we can
conclude that the CCA highlights or suppresses channels more
effectively through comparisons to other attention methods by
infusing clinical prior knowledge into attention block design.

Fig. 14 further depicts the correlation matrices between chan-

nel weights generated by the CCA and the other three attention
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Fig. 10. The averaged weight values of three global channel-wise statistics features in all channels at three stages with the CIC method: Avg (blue), Max (orange),
and Std (green). Standard deviation results are also plotted.
Fig. 11. The averaged weight values of three global channel-wise statistics features in all channels at three stages with the GCIC method: Avg (blue), Max (orange),
and Std (green). Standard deviation results are also plotted.
Fig. 12. The averaged weight values of three global channel-wise statistics features in all channels at three stages with the CFC method:Avg (blue), Max (orange),
and Std (green). Standard deviation results are also plotted.
Fig. 13. The attention weight values of CCA and other three attention methods along with the channel index in three stages.
ethods. As we expect, our CCA is different from the other
hree attention methods. There exist high-positive correlations
etween most channel weights in three-level stages. The SRM
9

shows the lower correlation between channel weights through
comparisons to the CCA and other two attention methods, while
ECA exhibits high correlations between channels in the high-level
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Fig. 14. Visualization of the correlation matrix between the channel weights. Conv_3_2, Conv_4_2, and Conv_5_2 represent low, middle, and high stages for SE, ECA,
SRM, and CCA.
stage. Moreover, the total sum of channel weights in CCA is far
smaller than SE, ECA, and SRM, since most channel weights are
close to zero due to the softmax function according to Fig. 13.
It indicates that the channels with high-positive correlation are rel-
atively useless in the CCA block compared with other three attention
methods, proving that our method is more capable of highlighting
important channels and inhibiting unimportant channels.

5.2.3. Visualization of CAM
This paper also uses the CAM method to visualize the heat

maps of the proposed CCA and comparable attention methods,
as shown in Fig. 15. It provides three representative AS-OCT
images of NC severity levels and their heat maps. For normal
AS-OCT images, all methods accurately focus on feature repre-
sentation location; however, our method focuses more on center
and bottom regions for mild and severe NC than the other three
attention methods. This is because these two regions contain
more useful feature representations than other regions, according
to the definition of opacity for NC. Compared to other state-of-
the-art attention methods like SE, ECA, and SRM, we can conclude
that the CCA is more capable of making the network model focus
on salient feature representation that locates accurately. It can
also explain why our CCA-Net obtains better classification results
than advanced attention-based CNNs.

5.3. Comparison with strong baselines

Table 4 shows the NC classification results of our CCA-Nets
and strong baselines (the best results of each evaluation measure

are bold). It can be observed that our CCA-Nets significantly

10
Table 4
NC classification result comparison of our CCA-Net and strong baselines. The
best results in this table are labeled in bold.
Methods ACC F1 PR Se Kappa

RF 85.45 87.10 86.80 87.53 73.49
MLR 89.84 91.43 90.70 93.96 82.29
SVM 89.78 91.29 90.47 93.22 81.95
DT 80.70 80.66 82.17 79.34 62.75
NB 74.50 70.29 69.75 74.00 57.32
Adaboost 79.08 75.75 82.84 73.92 62.15
GradientBoosting 86.88 87.72 88.09 88.05 76.38

GraNet [21] 57.85 – – – –
VGGNet19 89.91 91.15 90.48 93.52 82.35
GraNet 90.48 90.72 91.61 89.91 82.15
EfficientNet 91.50 91.38 91.71 91.11 84.31
ResNet18 91.02 90.98 91.35 90.69 83.43
CBAM-ResNet18 93.63 93.15 93.85 92.66 88.26
BAM-ResNet18 92.10 92.59 93.00 92.19 85.32
SRM-ResNet18 91.56 91.30 90.48 92.37 84.75
ECA-ResNet18 92.26 92.78 93.00 92.57 85.62
SENet-18 92.01 91.19 92.88 91.07 85.07
SGENet-18 [37] 92.55 92.80 92.85 92.87 86.34

CCA-Net-18 94.94 94.66 93.88 95.53 90.70
CCA-Var1-Net-18 94.84 94.91 96.69 93.63 90.20
CCA-Var2-Net-18 94.27 94.41 94.95 93.89 89.34
CCA-Net-34 94.87 94.94 95.13 94.79 90.54
CCA-Var1-Net-34 94.68 94.67 94.72 94.69 90.22
CCA-Var2-Net-34 95.13 95.06 95.21 95.00 90.93

outperform state-of-the-art CNNs and machine learning methods.

CCA-Var2-Net-34 gets the best accuracy with 95.13% and the
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Fig. 15. The CAM visualization of the proposed CCA and other state-of-the-art attention methods. Row 1 to row 3 denote the normal, mild NC, and severe NC.
Fig. 16. Confusion matrices of CCA-Nets and other three representative attention-based networks.
est F1 with 95.06% accordingly. It exceeds channel attention-
ased CNNs, e.g., SRM, with over 2%, original CNNs with 3%, and
eature extraction-based machine learning methods with over 5%.
pecifically, the CCA-Net-18 achieves the best sensitivity with
5.53%. It outperforms comparable methods over 2%, indicating
hat our method is more capable of predicting NC severity levels
ccurately, which is a clinically significant diagnosis indicator.
ur CCA-Nets achieve over 90% in the kappa except for CCA-Var2-
et-18, verifying the high reliability of our methods compared
ith other methods. As shown in Table 4, CNNs generally ob-
ain better classification results than machine learning methods,
hich confirms that CNNs methods are more capable of extract-

ng useful feature information than the combination of machine
earning methods and feature extraction methods.

To see detailed classification results of our methods and com-
arable methods, Fig. 16 depicts the confusion matrices of CCA-
et-18, CCA-Var2-Net, SENet-18, ECA-ResNet18, and SGENet-18.
t can see that our CCA-Nets achieve the best classification for
hree NC severity levels through comparisons to other three
ttention-based CNNs, respectively. However, the classification
esults of mild NC are worse than normal and severe NC, because
he boundaries between them are not clear. Overall, these results
emonstrate that CCA-Net’s efficiency in classifying NC severity
evels arising from prior clinical knowledge.
11
6. Ablation study

6.1. The impact of pooling integration methods

We test the effect of the proposed CIC method in the CCA block
compared with other pooling integration methods. On top of our
mixed pooling operator, we compared our CIC operator and its
variants with other two pooling integration methods: a multi-
layer perceptron (MLP) network of two fully connected layers
(used in SE) and a shared MLP network (employed in CBAM), as
shown in Fig. 7. Moreover, we also verify the effect of the batch
normalization (BN) layer for the mentioned pooling integration
methods by adding it after them, e.g., CIC layer with a BN layer,
as shown in Fig. 5(c). To implement the MLP and the shared
MLP based on mixed pooling, this paper concatenates the mixed
pooling features along the channel axis for SE, and sums three
mixed pooling features along the channel axis for CBAM. We also
use the default configurations of CBAM and SE. We adopt the
same experiment setting in Section 4 for all pooling integration
methods on the AS-OCT image dataset.

Table 5 reports the classification results of our CIC, its two
variants, and contrastive integration methods. The CIC and its
variants achieve better classification performance than MLP and
shared MLP, highlighting the superiority of the channel-interaction
method over constructing the inter-dependencies of channels and
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Table 5
Performance comparisons of different pooling integration methods
when taking ResNet18. The best results in this table are labeled
in bold.
Method ACC F1 Kappa

MP+MLP 93.03 93.15 87.04
MP+shared-MLP 93.89 94.03 88.61
MP+CIC 94.94 94.66 90.70
MP+GCIC 94.84 94.91 90.20
MP+CFC 94.27 94.41 89.34
MP+MLP+BN 92.93 92.97 86.59
MP+shared-MLP+BN 91.37 90.88 87.56
MP+CIC+BN 93.95 94.16 88.97
MP+GCIC+BN 93.35 93.54 87.86
MP+CFC+BN 92.94 92.74 87.31

Table 6
Comparisons of different gating operators based on CCA when
taking ResNet18. The best results in this table are labeled in bold.
Operator ACC F1 Kappa

Sigmoid 93.28 93.36 87.30
Tanh 93.44 93.30 87.69
ReLU 89.05 88.90 78.80
Sparemax [44] 91.09 91.83 84.09
Softmax 94.94 94.66 90.70

adjusting the relative importance of three different channel-wise
statistical features. The results also verify the effectiveness of
the channel-connected method through comparisons to the fully-
connected method for weighing mixed features. This is because
the channel-connected method uses a local–global integration
method and the fully-connected method adopts a global integra-
tion method, which agrees with the description in Sections 3 and
4.3.

Interestingly, all used integration methods with the BNmethod
orsen the classification performance. The possible reason to
ccount for classification results is that the softmax operator can
e taken as a normalization method, which is conflicted with the
N method.

.2. The impact of different gating operators

Table 6 provides the performance comparisons of five different
ating operators. It can be seen that exchanging the tanh and
he sigmoid for the softmax slightly worsens the NC classification
esults. However, when replacing the softmax with ReLu and
parsemax, the performance of CCA-Net dramatically drops below
he ResNet-18 baseline. This indicates that the CCA block with
oftmax is more effective in adjusting the importance of channels
han the other four gating operators. The careful construction of
he gating operator is an important factor for the NC classifica-
ion performance. Fig. 13 provides the attention weights in all
hannels for three severity levels of NC: Normal, Mild, and Severe.
e can see that the softmax can adjust the relative importance
f different channels effectively, highlighting significant channels
nd suppressing less useful channels.

.3. The impact of pooling methods

Table 7 shows the classification results of seven pooling meth-
ds with the proposed clinical integration operator (except the
esNet-18 baseline). Compared with the baseline, each pool-
ng component of mixed pooling boosts the performance. The
ombination of two pooling methods further brought significant
mprovements for NC classification on three metrics. Our mixed
ooling method obtains the best classification results among
even pooling methods, demonstrating that the proposed mixed
12
Table 7
Comparison of different pooling methods based on the CCA block
when taking ResNet18. The best results in this table are labeled
in bold.
Method ACC F1 Kappa

ResNet18 91.02 90.98 83.43
GAP 93.28 91.33 87.43
GMP 93.03 92.58 87.00
GSP 92.52 92.61 86.33
GAP+GMP 94.21 94.27 89.03
GMP+GSP 94.05 92.49 88.94
GAP+GSP 93.31 93.91 87.86
GAP+GMP+GSP 94.94 94.66 90.70

Table 8
Performance comparison of glaucoma detection on the ACRIMA dataset. The best
results in this table are labeled in bold.
Method ACC F1 Se SP AUC

VGG19 [31] 90.69 91.25 92.40 88.46 96.86
InceptionV3 [31] 90.00 90.56 92.16 0.8752 96.53
Xception [31] 89.77 90.51 93.46 85.80 96.05
ResNet50 [31] 90.29 90.76 91.05 89.43 96.14
SENet 96.48 96.40 96.15 95.82 99.37
SRM 95.78 95.71 95.71 95.64 99.07
ECA-Net 95.07 94.96 94.72 94.37 98.69
CCA-Net 97.89 97.84 97.58 97.28 99.70

pooling outperforms the combination of GAP and GMP in CBAM
and the combination of GAP and GSP in SRM. The results also
verify that three features play different roles in the CCA block,
agreeing with our expectation and clinical research.

7. Performance comparison on public datasets

Table 8 reports the glaucoma detection results of our CCA-
Net and other deep learning methods. The CCA-Net gets the best
performance among all methods (97.89% of accuracy, and 97.58%
of sensitivity). It increases over 1% through comparisons to other
attention-based CNNs in terms of accuracy and sensitivity. All
methods reached over 96% on AUC, and the proposed CCA-Net
gets the highest AUC value.

Table 9 shows the classification results of our method, com-
parable attention-based CNNs, and previous classification re-
sults on the UCSD dataset. It can see that the proposed CCA-
Net gets 96.09% accuracy and 94.06% sensitivity, respectively. It
achieves about 1.5% improvement compared with state-of-the-
art attention-based CNNs and previous work. The results on two
public datasets also demonstrate the generalization ability of our
method.

Figs. 17 and 18 provide attention weight visualization results
of our CCA-Net on the ACRIMA dataset and the UCSD dataset. It
can be observed that three global feature representations play
different roles in AMD and glaucoma recognition, proving the
effectiveness of our method.

8. Conclusion and future work

This paper proposes a clinical-awareness attention network
(CCA-Net) to predict AS-OCT image-based nuclear cataract sever-
ity levels. In the CCA-Net, we fully leverage the potential of
clinical prior knowledge to construct a practical yet effective
clinical-awareness attention (CCA) block for enhancing the per-
formance by modeling the inter-relationships of channels in a
local–global manner. The comprehensive experiments on the
clinical AS-OCT image dataset and publicly available ophthalmol-
ogy datasets show that our method performs better than strong
baselines and previous state-of-the-art methods. Furthermore,
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Fig. 17. The averaged weight values of three global channel-wise statistics features in all channels at three stages on the ACRIMA dataset by using CCA-Net: Avg
blue), Max (orange), and Std (green). Standard deviation results are also plotted.
Fig. 18. The averaged weight values of three global channel-wise statistics features in all channels at three stages on the USUD dataset by using CCA-Net: Avg (blue),
ax (orange), and Std (green). Standard deviation results are also plotted.
Table 9
Performance comparison of the CCA-Net and state-of-the-art methods on the
UCSD dataset. The best results in this table are labeled in bold.
Method ACC Se F1 Kappa

LBP-SVM [33] 71.33 48.27 64.04 41.00
HOG-SVM [45] 78.90 66.20 – –
MDFF [33] 93.93 91.76 91.46 83.00
VGG16 [33] 91.50 91.50 91.50 77.00
ResNet34 [32] 80.50 78.30 – –
Inception [45] 90.30 90.00 – –
LACNN [45] 90.20 88.10 – –
LACNN-AlexNet [45] 91.20 86.80 – –
LACNN-Inception [45] 93.00 91.60 – –
SENet 94.16 90.00 91.49 91.23
SRM 94.20 89.74 91.30 91.29
ECA-Net 94.40 91.83 92.08 91.66
CCA-Net 96.09 94.06 94.39 94.18

we analyze the importance of clinical features with learnable
weights visually and verify the effectiveness of inherent behaviors
in CCA in-depth, enhancing the interpretation and understanding
of our CCA-Net in automatic NC diagnosis. We hope it can mo-
tivate attention-based CNN architecture design to exploit prior
knowledge fusion in other applications. We plan to develop
lightweight CCA-Nets and deploy them on ophthalmic equipment
in the future. More AS-OCT images would be collected to test the
generation performance of designed models.
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